Skip to main content
Log in

Asymptotic quadratic convergence of the parallel block-Jacobi EVD algorithm with dynamic ordering for Hermitian matrices

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

The proof of the asymptotic quadratic convergence is provided for the parallel two-sided block-Jacobi EVD algorithm with dynamic ordering for Hermitian matrices. The discussion covers the case of well-separated eigenvalues as well as clusters of eigenvalues. Having p processors, each parallel iteration step consists of zeroing 2p off-diagonal blocks chosen by dynamic ordering with the aim to maximize the decrease of the off-diagonal Frobenius norm. Numerical experiments illustrate and confirm the developed theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bečka, M., Vajteršic, M.: Block-Jacobi SVD algorithms for distributed memory systems I: hypercubes and rings. Parallel Algorithm Appl. 13, 265–287 (1999)

    Article  MathSciNet  Google Scholar 

  2. Bečka, M., Okša, G., Vajteršic, M.: Dynamic ordering for a parallel block-Jacobi SVD algorithm. Parallel Comput. 28, 243–262 (2002)

    Article  Google Scholar 

  3. Bečka, M., Okša, G., Vajteršic, M.: New dynamic orderings for the parallel one-sided block-Jacobi SVD algorithm. Parallel Proc. Lett. (2015). https://doi.org/10.1142/S0129626415500036

    Article  MathSciNet  MATH  Google Scholar 

  4. Demmel, J.W., Veselić, K.: Jacobi’s method is more accurate than QR. SIAM J. Matrix Anal. Appl. 13, 1204–1245 (1992)

    Article  MathSciNet  Google Scholar 

  5. Dopico, F.M., Molera, J.M., Moro, J.: An orthogonal high relative accuracy algorithm for symmetric eigenproblem. SIAM J. Matrix Anal. Appl. 25, 301–351 (2003)

    Article  MathSciNet  Google Scholar 

  6. Drmač, Z., Veselić, K.: New fast and accurate Jacobi SVD algorithm: I. SIAM J. Matrix Anal. Appl. 29, 1322–1342 (2007)

    Article  MathSciNet  Google Scholar 

  7. Drmač, Z., Veselić, K.: New fast and accurate Jacobi SVD algorithm: II. SIAM J. Matrix Anal. Appl. 29, 1343–1362 (2007)

    Article  MathSciNet  Google Scholar 

  8. Drmač, Z.: A global convergence proof for cyclic Jacobi methods with block rotations. SIAM J. Matrix Anal. Appl. 31, 1329–1350 (2010)

    Article  MathSciNet  Google Scholar 

  9. Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. Johns Hopkins UP, Baltimore (2013)

    MATH  Google Scholar 

  10. Hari, V.: On sharp quadratic convergence bounds for the serial Jacobi methods. Numer. Math. 60, 375–406 (1991)

    Article  MathSciNet  Google Scholar 

  11. Hari, V.: Convergence to diagonal form of block Jacobi-type methods. Numer. Math. 129, 449–481 (2015)

    Article  MathSciNet  Google Scholar 

  12. Hoffman, A.J., Wielandt, H.W.: The variation of the spectrum of a normal matrix. Duke Math. J. 20, 37–39 (1953)

    Article  MathSciNet  Google Scholar 

  13. Kudo, S., Yamamoto, Y., Bečka, M., Vajteršic, M.: Performance analysis and optimization of the parallel one-sided block-Jacobi SVD algorithm with dynamic ordering and variable blocking. Concurrency and Computation: Practice and Experience (2016). https://doi.org/10.1002/cpe.4059

    Article  Google Scholar 

  14. Luk, F., Park, H.: On parallel Jacobi orderings. SIAM J. Sci. Stat. Comput. 10, 18–26 (1989)

    Article  MathSciNet  Google Scholar 

  15. Luk, F., Park, H.: A proof of convergence for two parallel Jacobi SVD algorithms. IEE Trans. Comp. 38, 806–811 (1989)

    Article  MathSciNet  Google Scholar 

  16. Matejaš, J., Hari, V.: Accuracy of the Kogbetliantz method for the scaled diagonally dominant triangular matrices. Appl. Math. Comput. 217, 3726–3746 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Mathias, R.: Accurate eigensystem computations by Jacobi methods. SIAM J. Matrix Anal. Appl. 16, 977–1003 (1995)

    Article  MathSciNet  Google Scholar 

  18. Okša, G., Vajteršic, M.: Efficient pre-processing in the parallel block-Jacobi SVD algorithm. Parallel Comput. 32, 166–176 (2006)

    Article  MathSciNet  Google Scholar 

  19. Okša, G., Yamamoto, Y., Vajteršic, M.: Asymptotic quadratic convergence of the serial block-Jacobi EVD algorithm for Hermitian matrices. Numer. Math. 136, 1071–1095 (2017)

    Article  MathSciNet  Google Scholar 

  20. Parlett, B.N.: The Symmetric Eigenvalue Problem. SIAM, Philadelphia (1987)

    MATH  Google Scholar 

  21. Sameh, A.H.: On Jacobi and Jacobi-like algorithms for parallel computer. Math. Comput. 25, 579–590 (1971)

    Article  MathSciNet  Google Scholar 

  22. Schönhage, A.: Zur Konvergenz des Jacobi-Verfahrens. Numer. Math 3, 374–380 (1961)

    Article  MathSciNet  Google Scholar 

  23. Schönhage, A.: Zur quadratischen Konvergenz des Jacobi-Verfahrens. Numer. Math. 6, 410–412 (1964)

    Article  MathSciNet  Google Scholar 

  24. Shroff, G., Schreiber, R.: On the convergence of the cyclic Jacobi method for parallel block orderings. SIAM J. Matrix Anal. Appl. 10, 326–346 (1989)

    Article  MathSciNet  Google Scholar 

  25. Yamamoto, Y., Lan, Z., Kudo, S.: Convergence analysis of the parallel classical block Jacobi method for the symmetric eigenvalue problem. J. SIAM Lett. 6, 57–60 (2014)

    Article  MathSciNet  Google Scholar 

  26. Zhou, B.B., Brent, R.P.: Jacobi-like algorithms for eigenvalue decomposition of a real normal matrix using real arithmetic. In: Proceedings of IPPS’96, the 10th International Parallel Processing Symposium, 15–19 April, Honolulu, Hawai, USA (1996)

Download references

Acknowledgements

We thank both anonymous referees for their comments and suggestions that significantly improved the paper’s quality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Okša.

Additional information

Communicated by Daniel Kressner.

Gabriel Okša, Martin Bečka and Marián Vajteršic were supported by the VEGA Grant No. 2/0004/17. Yusaku Yamamoto was supported in part by the Japanese Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research (Nos. 26286087, 15H02708, 15H02709, 16KT0016, 17H02828, 17K19966).

Proof of Lemma 1

Proof of Lemma 1

Proof

The proof of Eq. (6) is similar to the proof of Lemma 1 in [19]. The left-hand side of Eq. (6) is bounded by an intermediate quantity involving \(\Vert A_{X_i X_j}\Vert _F\), \(\Vert A_{Y_i X_j}\Vert _F\) and \(\Vert P_{Y_i X_i}\Vert _2\) as follows (see [19, p. 1076]):

$$\begin{aligned}&\left| \Vert \tilde{A}_{X_i X_j}\Vert _F^2-\Vert A_{X_i X_j}\Vert _F^2 \right| \nonumber \\&\quad \le \Vert P_{Y_i X_i}\Vert _2^2\max \left\{ \Vert A_{X_i X_j}\Vert _F^2,\Vert A_{Y_i X_j}\Vert _F^2\right\} + 2\Vert A_{X_i X_j} \Vert _F\Vert P_{Y_i X_i}\Vert _2\Vert A_{Y_i X_j}\Vert _F. \end{aligned}$$

Then Eq. (6) follows immediately by using \(\max \left\{ \Vert A_{X_i X_j}\Vert _F^2,\Vert A_{Y_i X_j}\Vert _F^2\right\} \le \Vert A_{X_1 Y_1}\Vert _F^2\) and \(\Vert P_{Y_i X_i}\Vert _2 \le \Vert A_{X_i Y_i}\Vert _F/\delta \). Similarly, the left-hand side of Eq. (7) can be bounded as

$$\begin{aligned}&\left| \Vert \hat{A}_{X_i X_j}\Vert _F^2-\Vert \tilde{A}_{X_i X_j}\Vert _F^2\right| \nonumber \\&\quad \le \Vert P_{Y_j X_j}\Vert _2^2\max \left\{ \Vert \tilde{A}_{X_i X_j}\Vert _F^2, \Vert \tilde{A}_{X_i Y_j}\Vert _F^2\right\} \nonumber \\&\qquad +\, 2\Vert \tilde{A}_{X_i X_j}\Vert _F\Vert P_{Y_j X_j}\Vert _2 \Vert \tilde{A}_{X_i Y_j}\Vert _F. \end{aligned}$$
(31)

To bound the right-hand side, we need to evaluate \(\Vert \tilde{A}_{X_i X_j}\Vert _F\) and \(\Vert \tilde{A}_{X_i Y_j}\Vert _F\). From the definition of \(\tilde{A}_{X_i X_j}\),

$$\begin{aligned} \tilde{A}_{X_i X_j} = P_{X_i X_i}^H A_{X_i X_j}+P_{Y_i X_i}^H A_{Y_i X_j}, \end{aligned}$$
(32)

we have

$$\begin{aligned} \Vert \tilde{A}_{X_i X_j}\Vert _F\le & {} \Vert A_{X_i X_j}\Vert _F+\Vert P_{Y_i X_i}\Vert _2 \Vert A_{Y_iX_j}\Vert _F \nonumber \\\le & {} \Vert A_{X_i X_j}\Vert _F+\frac{\Vert A_{X_i Y_i}\Vert _F}{\delta } \,\Vert A_{X_1 Y_1}\Vert _F. \end{aligned}$$
(33)

On the other hand, from the unitarity of transformation in Eq. (3), we have

$$\begin{aligned} \Vert \tilde{A}_{X_i X_j}\Vert _F^2+\Vert \tilde{A}_{Y_i X_j}\Vert _F^2 = \Vert A_{X_i X_j} \Vert _F^2+\Vert A_{Y_i X_j}\Vert _F^2, \end{aligned}$$

which leads to

$$\begin{aligned} \Vert \tilde{A}_{X_i X_j}\Vert _F^2 \le \Vert A_{X_i X_j}\Vert _F^2+\Vert A_{Y_i X_j}\Vert _F^2 \le 2\Vert A_{X_1 Y_1}\Vert _F^2. \end{aligned}$$
(34)

Similarly,

$$\begin{aligned} \Vert \tilde{A}_{X_i Y_j}\Vert _F^2 \le \Vert A_{X_i Y_j}\Vert _F^2+\Vert A_{Y_i Y_j}\Vert _F^2 \le 2\Vert A_{X_1 Y_1}\Vert _F^2. \end{aligned}$$
(35)

Putting upper bounds from Eqs. (34) and (35) into the first term of Eq. (31), and inserting upper bounds from Eqs. (33) and (35) into the second term of Eq. (31) gives

$$\begin{aligned}&\left| \Vert \hat{A}_{X_i X_j}\Vert _F^2-\Vert \tilde{A}_{X_i X_j}\Vert _F^2\right| \nonumber \\&\quad \le \frac{\Vert A_{X_j Y_j}\Vert _F^2}{\delta ^2}\cdot 2\Vert A_{X_1 Y_1}\Vert _F^2 \nonumber \\&\qquad +\, 2\left( \Vert A_{X_i X_j}\Vert _F+\frac{\Vert A_{X_i Y_i}\Vert _F}{\delta }\, \Vert A_{X_1 Y_1}\Vert _F\right) \cdot \frac{\Vert A_{X_j Y_j}\Vert _F}{\delta }\cdot \sqrt{2}\Vert A_{X_1 Y_1}\Vert _F \nonumber \\&\quad \le 2\,\frac{\Vert A_{X_1 Y_1}\Vert _F^2}{\delta ^2}\left( \Vert A_{X_j Y_j}\Vert _F^2+ \sqrt{2}\,\Vert A_{X_i Y_i}\Vert _F \Vert A_{X_j Y_j}\Vert _F\right) \nonumber \\&\qquad +\,2\sqrt{2}\,\frac{\Vert A_{X_1 Y_1}\Vert _F}{\delta }\,\Vert A_{X_j Y_j}\Vert _F \Vert A_{X_i X_j}\Vert _F \nonumber \\&\quad \le \frac{\Vert A_{X_1 Y_1}\Vert _F^2}{\delta ^2}\left\{ \sqrt{2}\Vert A_{X_i Y_i} \Vert _F^2+(2+\sqrt{2})\Vert A_{X_j Y_j}\Vert _F^2\right\} \nonumber \\&\qquad +\,2\sqrt{2}\,\frac{\Vert A_{X_1 Y_1}\Vert _F}{\delta }\, \Vert A_{X_j Y_j}\Vert _F\Vert A_{X_i X_j}\Vert _F, \end{aligned}$$

where we used the upper bound \(2ab\le a^2+b^2\) in the last inequality.

Since the row and column updates for remaining three off-diagonal blocks are, mutatis mutandis block indices, the same as for \(A_{X_iX_j}\) (see Eq. (5)), applying the above approach three times one gets remaining upper bounds for the changes of \(\Vert A_{X_iY_j}\Vert _F^2\), \(\Vert A_{Y_iX_j}\Vert _F^2\) and \(\Vert A_{Y_iY_j}\Vert _F^2\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okša, G., Yamamoto, Y., Bečka, M. et al. Asymptotic quadratic convergence of the parallel block-Jacobi EVD algorithm with dynamic ordering for Hermitian matrices. Bit Numer Math 58, 1099–1123 (2018). https://doi.org/10.1007/s10543-018-0711-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-018-0711-3

Keywords

Mathematics Subject Classification

Navigation