Skip to main content
Log in

Foundations of Vectorial Metabolism and Osmochemistry

  • Published:
Bioscience Reports

Abstract

Chemical transformations, like osmotic translocations, are transport processes when looked at in detail. In chemiosmotic systems, the pathways of specific ligand conduction are spatially orientated through osmoenzymes and porters in which the actions of chemical group, electron and solute transfer occur as vectorial (or higher tensorial order) diffusion processes down gradients of total potential energy that represent real spatially directed fields of force. Thus, it has been possible to describe classical bag-of-enzymes biochemistry as well as membrane biochemistry in terms of transport. But it would not have been possible to explain biological transport in terms of classical transformational biochemistry or chemistry. The recognition of this conceptual asymmetry in favour of transport has seemed to be upsetting to some biochemists and chemists; and they have resisted the shift towards thinking primarily in terms of the vectorial forces and co-linear displacements of ligands in place of their much less informative scalar products that correspond to the conventional scalar energies. Nevertheless, considerable progress has been made in establishing vectorial metabolism and osmochemistry as acceptable biochemical disciplines embracing transport and metabolism, and bioenergetics has been fundamentally transformed as a result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • N. K. Adam (1941) The Physics and Chemistry of Surfaces EditionNumber3 University Press Oxford

    Google Scholar 

  • D. R. Allred L. A. Staehelin (1986) ArticleTitleImplications of cytochrome b6/f location for thylakoid electron transport J. Bioenerg. Biomembr 18 419–436 Occurrence Handle10.1007/BF00743013 Occurrence Handle3533910

    Article  PubMed  Google Scholar 

  • S. A. Arrhenius (1889) ArticleTitleElectrolytic dissociation versus hydration Phil. Mag 28 30–38

    Google Scholar 

  • S. A. Arrhenius (1912) ArticleTitleElectrolytic dissociation J. Am. Chem. Soc 34 353–364 Occurrence Handle10.1021/ja02205a001

    Article  Google Scholar 

  • A. D. Bangham M. M. Standish J. C. Watkins (1965) ArticleTitleDiffusion of univalent ions across the lamellae of swollen phospholipids J. Mol. Biol 13 238–252 Occurrence Handle5859039

    PubMed  Google Scholar 

  • A. D. Bangham (1983) Introduction. Liposomes: An historical perspective M. J. Ostro (Eds) Liposomes Marcel Dekker New York 1–13

    Google Scholar 

  • R. P. Bell (1959) The Proton in Chemistry Methuen London

    Google Scholar 

  • K. B. Blodgett (1934) ArticleTitleMonomolecular films of fatty acids on glass J. Am. Chem. Soc 56 495 Occurrence Handle10.1021/ja01317a513

    Article  Google Scholar 

  • K. B. Blodgett (1935) ArticleTitleFilms built by depositing successive monomolecular layers on a solid surface J. Am. Chem. Soc 57 1007–1022 Occurrence Handle10.1021/ja01309a011

    Article  Google Scholar 

  • P. D. Boyer (1974) ArticleTitleConformational coupling in biological energy transductions BBA Library 13 289–301

    Google Scholar 

  • P. D. Boyer (1983) How cells make ATP D. L. Lennon (Eds) et al. Biochemistry of Metabolic Processes Elsevier New York 465–477

    Google Scholar 

  • P. D. Boyer (1989) ArticleTitleA perspective of the binding change mechanism for ATP synthesis FASEB J 3 2164–2178 Occurrence Handle2526771

    PubMed  Google Scholar 

  • E. J. Conway (1951) ArticleTitleThe biological performance of osmotic work. A redox pump Science 113 270–273 Occurrence Handle14809309

    PubMed  Google Scholar 

  • F. L. Crane J. L. Glenn D. E. Green (1956) ArticleTitleElectron-transfer system IV. Electron-transfer particle Biochim. Biophys. Acta 22 475–487 Occurrence Handle10.1016/0006-3002(56)90058-0 Occurrence Handle13382877

    Article  PubMed  Google Scholar 

  • Curie, M. P. (1894) Sur la syme’ trie dans les phe’ nomenes physiques, syme’ trie d’un champ ’ 1ectrique et d’un champ magne’ tique. J. Phys., 3eme Ser. : 393–415.

  • J. F. Danielli (1954) ArticleTitleMorphological and molecular aspects of active transport Symp. Soc. Exp. Biol 8 502–516

    Google Scholar 

  • R. E. Davies A. G. Ogston (1950) ArticleTitleOn the mechanism of secretion of ions by gastric mucosae and by other tissues Biochem. J 46 324–333

    Google Scholar 

  • R. E. Davies H. A. Krebs (1952) ArticleTitleBiochemical aspects of the transport of ions by nervous tissue Biochem. Soc. Symp 8 77–92

    Google Scholar 

  • H. Davson J. F Danielli (1943) The Permeability of Natural Membranes University Press Cambridge

    Google Scholar 

  • Davy, H. (1808). The Bakerian lecture on some new phenomena of chemical changes produced by Electricity, particularly the decomposition of fixed Alkalies, and the exhibition of the new substances which constitute their bases; and on the general nature of Alkaline bodies. Phil. Trans. 1–44

  • P. Debye E. Huckel (1923) ArticleTitleZur Theorie der Electrolyte. I. Gefrierpunktserniedrigung und verwandte Erscheinungen Physik. Z 24 185–206

    Google Scholar 

  • H. Vries ParticleDe (1888) ArticleTitleVersuche m. lebende Membranen Z. physikal. Chem 2 415–432

    Google Scholar 

  • F. G. Donnan (1925) ArticleTitleTheory of membrane equilibria Chem. Rev 1 73–90 Occurrence Handle10.1021/cr60001a003

    Article  Google Scholar 

  • M. F. Dunn V. Aguilar P. Brzovic W. F. Drewe SuffixJr. K. F. Houben C. A. Leja M. Roy (1990) ArticleTitleThe tryptophan synthase bienzyme complex transfers indole between the α- and β-sites via a 25–30 Å long tunnel Biochemistry 29 8598–8607 Occurrence Handle10.1021/bi00489a015 Occurrence Handle2271543

    Article  PubMed  Google Scholar 

  • A. Einstein (1905) ArticleTitleDie von der molecularkinetischen Theorie der Warme Ann. Physik 17 549–560

    Google Scholar 

  • A. Einstein (1908) ArticleTitleElementare Theorie d. Brownschen Bewegg Z. Electrochem 14 235–239

    Google Scholar 

  • M. G. Evans M. Polanyi (1935) ArticleTitleSome applications of the transition state method to the calculation of reaction velocities Trans. Farad. Soc 31 875–894 Occurrence Handle10.1039/tf9353100875

    Article  Google Scholar 

  • H. Eyring (1935) ArticleTitleThe activated complex in chemical reactions J. Chem. Phys 3 107–115 Occurrence Handle10.1063/1.1749604

    Article  Google Scholar 

  • Faraday, M. (1834) Experimental researches in Electricity. Seventh series. 11. On electro-chemical decomposition (continued). 13. On the absolute quantity of electricity associated with the particles or atoms of matter. Phil. Trans. 77–122

  • A. Fick (1855) ArticleTitleOn liquid diffusion Phil. Mug 10 30–39

    Google Scholar 

  • M. Futai H. Hanada Y. Moriyama M Maeda (1991) Proton translocating ATP synthase (F0F1): Understanding its molecular structure and function Y. Mukohata (Eds) New Era of Bioenergetics Academic Press Tokyo 73–108

    Google Scholar 

  • Garland, P. B. (1991) Chemiosmotic systems in medicine. Biosci. Rep. 11 (this issue)

  • S. Glasstone K. J. Laidler H Eyring (1941) The Theory of Rate Processes McGraw-Hill New York

    Google Scholar 

  • I. M. Glynn S. J. D. Karlish (1990) ArticleTitleOccluded cations in active transport Annu. Rev. Biochem 59 171–205 Occurrence Handle10.1146/annurev.bi.59.070190.001131 Occurrence Handle1695831

    Article  PubMed  Google Scholar 

  • E. Gorter F. Grendel (1925) ArticleTitleOn bimolecular layer of lipoids on the chromocytes of the blood J. Exp. Med 41 439–443 Occurrence Handle10.1084/jem.41.4.439

    Article  Google Scholar 

  • E. Gorter F. Grendel (1926) ArticleTitleSpreading of proteins Proc. Kon. Acad. Wetensch. Amsterdam 29 314

    Google Scholar 

  • D. E. Green I. H. Stickland H. L. A. Tarr (1934) ArticleTitleStudies on reversible dehydrogenase systems III. Carrier-linked reactions between isolated dehydrogenases Biochem. J 28 1812–1824

    Google Scholar 

  • G. Grijns (1896) ArticleTitleUeber den einfluss gelöster Stoffe auf die rothen Blutzellen, in Verbindung mit den Erscheinungen der Osmose und Diffusion Pfluger’s Arch. ges. Physiol 63 86–119 Occurrence Handle10.1007/BF01795414

    Article  Google Scholar 

  • W. R. Grove (1839) ArticleTitleOn voltaic series and the combination of gases by platinum Phil. Mag. Ser. 3 14 127–130

    Google Scholar 

  • E. A. Guggenheim (1933) Modern Thermodynamics by the Methods of Willard Gibbs Methuen London

    Google Scholar 

  • G. G. Hammes (1964) ArticleTitleMechanism of enzyme catalysis Nature 204 342–343 Occurrence Handle14228866

    PubMed  Google Scholar 

  • Harold F. M. (1991) Biochemical topology: From vectorial metabolism to morphogenesis. Biosci. Rep. 11 (this issue)

  • S. Hedin (1897) ArticleTitleÜber die Permeabilität der Blutkörperchen Pfluger’s Arch. ges. Physiol 68 229–338 Occurrence Handle10.1007/BF01661862

    Article  Google Scholar 

  • S. Hedin (1898) ArticleTitleVersuche über das Vermögen der Salze einiger Stickstoffbasen in die Blutkörperchen einzudringen Pfluger’s Arch. ges. Physiol 70 525–543 Occurrence Handle10.1007/BF01804723

    Article  Google Scholar 

  • Henderson, P. J. F. (1991) Studies of translocation catalysis. Biosci. Rep. 11 (this issue)

  • W. Hilpert B. Schink P. Dimroth (1984) ArticleTitleLife by a new decarboxylation-dependent energy conservation mechanism with Na+ as coupling ion EMBO J 3 1665–1680

    Google Scholar 

  • R. Hober (1945) Physical Chemistry of Cells and Tissues J. and A. Churchill Ltd London

    Google Scholar 

  • G. Holton (1973) Thematic Origins of Scientific Thought: Kepler to Einstein Harvard University Press Cambridge, Mass

    Google Scholar 

  • C. H. Hyde S. A. Ahmed E. A. Padlan E. W. Miles D. R. Davies (1988) ArticleTitleThree-dimensional structure of the tryptophan synthase α2β2 multienzyme complex from Salmonella typhimurium J. Biol. Chem 263 17857–17871 Occurrence Handle3053720

    PubMed  Google Scholar 

  • Kagawa Y., Shigeo O., Hamomoto T., Harada M., Ito Y., Sato M. (1991) The α1β1 heterodimer and molecular assembly of ATP synthase 109–132

  • D. Keilin T. E. King (1958) ArticleTitleReconstitution of the succinic oxidase system from soluble succinic dehydrogenase and a particulate cytochrome system preparation NatureLond 181 1520–1522

    Google Scholar 

  • D. Keilin E. C. Slater (1953) ArticleTitleCytochrome Brit. Med. Bull 9 89–97 Occurrence Handle13059390

    PubMed  Google Scholar 

  • D. P. Kelly (1990) Energetics of chemolithotrophs T. A. Krulwich (Eds) The Bacteria NumberInSeriesVol. 12 Academic Press San Diego 479–503

    Google Scholar 

  • J. Kendrew (1961) The structure of globular proteins. T. W. Goodwin O. Lindberg (Eds) Biological Structure and Function NumberInSeriesVol. 1 Academic Press London 5–11

    Google Scholar 

  • D. E. Koshland (1960) ArticleTitleThe active site and enzyme action Adv. Enzymol 22 45–97

    Google Scholar 

  • Koshland, D. E. (1976) The role of flexibility in the specificity, control and evolution of enzymes FEBS Lett. 62:Supplement–E47–E52.

  • D. E. Koshland K. E. Neet (1968) ArticleTitleThe catalytic and regulatory properties of enzymes Annu. Rev. Biochem 37 359–410 Occurrence Handle10.1146/annurev.bi.37.070168.002043 Occurrence Handle4877056

    Article  PubMed  Google Scholar 

  • K. Krab M. Wikström (1987) ArticleTitlePrinciples of coupling between electron transfer and proton translocation with special reference to proton-translocation mechanisms in cytochrome oxidase Biochim. Biophys. Acta 895 25–39 Occurrence Handle2449910

    PubMed  Google Scholar 

  • H. A. Kramers (1940) ArticleTitleBrownian motion in a field of force and the diffusion model of chemical reactions Physica 7 284–304 Occurrence Handle10.1016/S0031-8914(40)90098-2

    Article  Google Scholar 

  • I. Langmuir (1916) ArticleTitleConstitution and fundamental properties of solids and liquids J. Am. Chem. Soc 38 2221–2295 Occurrence Handle10.1021/ja02268a002

    Article  Google Scholar 

  • I. Langmuir (1917) ArticleTitleConstitution and fundamental properties of solids and liquids J. Am. Chem. Soc 39 1848–1906 Occurrence Handle10.1021/ja02254a006

    Article  Google Scholar 

  • I. Langmuir (1920) ArticleTitleThe mechanism of the surface phenomena of flotation Trans. Farad. Soc 15 62–68 Occurrence Handle10.1039/tf9201500062

    Article  Google Scholar 

  • I. Langmuir (1938) ArticleTitleOverturning and anchoring of monolayers Science 87 493–500

    Google Scholar 

  • I. Langmuir (1939) ArticleTitleMolecular layers Proc. Roy. Soc. A 170 1–39

    Google Scholar 

  • F. Lipmann (1941) ArticleTitleMetabolic generation and utilisation of phosphate bond energy Adv. Enzymol 1 99–162

    Google Scholar 

  • F. Lipmann (1946) Metabolic process patterns D. E. Green (Eds) Currents in Biochemical Research Interscience New York 137–148

    Google Scholar 

  • F. Lipmann (1960) Attempts towards a formulation of biological use of energy in terms of chemical potentials D. Nachmansohn (Eds) Molecular Biology Academic Press New York 37–47

    Google Scholar 

  • H. Lundegardh (1945) ArticleTitleAbsorption, transport and exudation of inorganic ions by the roots Archiv. Bot. 32A 12 1–139

    Google Scholar 

  • D. A. MacInnes (1939) The Principles of Electrochemistry Reinhold New York

    Google Scholar 

  • B. G. Malmström (1988) ArticleTitleRedox loops and proton pumps FEBS Lett 231 268–269 Occurrence Handle10.1016/0014-5793(88)80745-2 Occurrence Handle2834227

    Article  PubMed  Google Scholar 

  • D. W. Margerum (1982) Chemistry of copper(III)-peptide complexes T. E. King (Eds) et al. Oxidases and Related Redox Systems Pergamon Oxford 193–206

    Google Scholar 

  • T. Miki Orii (1986) ArticleTitleCytochrome c peroxidase activity in bovine heart cytochrome oxidase incorporated in liposomes and generation of membrane potential J. Biochem 100 735–745 Occurrence Handle3023315

    PubMed  Google Scholar 

  • P. Mitchell (1949) The osmotic barrier in bacteria A. A. Miles N. W. Pirie (Eds) The Nature of the Bacterial Surface Blackwell Oxford 55–75

    Google Scholar 

  • P. Mitchell (1954) ArticleTitleTransport of phosphate through an osmotic barrier Symp. Soc. Exp. Biol 8 254–261

    Google Scholar 

  • P. Mitchell (1956) ArticleTitleDiscussion contribution Faraday Soc. Discuss 21 278–279

    Google Scholar 

  • P. Mitchell (1957a) ArticleTitleA general theory of membrane transport from studies of bacteria Nature 180 134–136

    Google Scholar 

  • P. Mitchell (1957b) The origin of life and the formation and organising functions of natural membranes Oparin (Eds) et al. The Origin of Life on the Earth Publ. Ho. Acad. Sci USSR, Moscow 229–234

    Google Scholar 

  • P. Mitchell (1959) ArticleTitleStructure and function in microorganisms Biochem. Soc. Syrup 16 73–93

    Google Scholar 

  • P. Mitchell (1961a) Biological transport phenomena and the spatially anisotropic characteristics of enzyme systems causing a vector component of metabolism A. Kleinzeller A. Kotyk (Eds) Membrane Transport and Metabolism Academic Press New York 22–34

    Google Scholar 

  • P. Mitchell (1961b) Discussion contributions A. Kleinzeller A. Kotyk (Eds) Membrane Transport and Metabolism Academic Press New York 100–102

    Google Scholar 

  • P. Mitchell (1961c) Discussion contribution A. Kleinzeller A. Kotyk (Eds) Membrane Transport and Metabolism Academic Press New York 456

    Google Scholar 

  • P. Mitchell (1961d) Approaches to the analysis of specific membrane transport T. W. Goodwin O. Lindberg (Eds) Biological Structure and Function Academic Press New York 581–599

    Google Scholar 

  • P. Mitchell (1961e) ArticleTitleCoupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism Nature 191 144–148

    Google Scholar 

  • P. Mitchell (1962) ArticleTitleMetabolism, transport and morphogenesis: which drives which? J. Gen. Microbiol 29 25–37 Occurrence Handle14474640

    PubMed  Google Scholar 

  • P. Mitchell (1963) ArticleTitleMolecule, group and electron translocation through natural membranes Biochem. Soc. Symp 22 141–168

    Google Scholar 

  • P. Mitchell (1966) ArticleTitleChemiosmotic coupling in oxidative and photosynthetic phosphorylation Biol.Rev 41 445–502 Occurrence Handle10.1086/405228 Occurrence Handle5329743

    Article  PubMed  Google Scholar 

  • P. Mitchell (1967a) ArticleTitleTranslocations through natural membranes Adv. Enzymol 29 33–87

    Google Scholar 

  • P. Mitchell (1967b) ArticleTitleActive transport and ion accumulation Compr. Biochem 22 167–197

    Google Scholar 

  • P. Mitchell (1967c) ArticleTitleProton-translocation phosphorylation in mitochondria, chloroplasts and bacteria: natural fuel cells and solar cells Federation Proe 26 1370–1379

    Google Scholar 

  • P. Mitchell (1969) ArticleTitleChemiosmotic coupling and energy transduction Theor. Exp. Biophys 2 159–216

    Google Scholar 

  • P. Mitchell (1970a) Reversible coupling between transport and chemical reactions E. E. Bittar (Eds) Membranes and Ion Transport NumberInSeriesVol. 1 John Wiley & Son London 192–256

    Google Scholar 

  • P. Mitchell (1970b) ArticleTitleMembranes of cells and organelles: morphology, transport and metabolism Symp. Soc. Gen. Microbiol 20 121–166

    Google Scholar 

  • P. Mitchell (1972) ArticleTitleChemiosmotic coupling in energy transduction: a logical development of biochemical knowledge Bioenerg 3 5–24 Occurrence Handle10.1007/BF01515993

    Article  Google Scholar 

  • P. Mitchell (1973) ArticleTitlePerformance and conservation of osmotic work by proton-coupled solute porter systems Bioenerg 4 63–91 Occurrence Handle10.1007/BF01516051

    Article  Google Scholar 

  • P. Mitchell (1976) ArticleTitlePossible molecular mechanisms of the protonmotive function of cytochrome systems J. Theoret. Biol 62 327–367 Occurrence Handle10.1016/0022-5193(76)90124-7

    Article  Google Scholar 

  • P. Mitchell (1977) ArticleTitleEpilogue: from energetic abstraction to biochemical mechanism Symp. Soc. Gen. Microbiol 27 383–423

    Google Scholar 

  • P. Mitchell (1979) Direct chemiosmotic ligand conduction mechanisms in protonmotive complexes C. P. Lee (Eds) et al. Membrane Bioenergetics Addison-Wesley Reading, Mass 361–372

    Google Scholar 

  • P. Mitchell (1981a) Bioenergetic aspects of unity in biochemistry: evolution of the concept of ligand conduction in chemical, osmotic and chemiosmotic reaction mechanisms G. Semenza (Eds) Of Oxygen Fuels and Living Matter NumberInSeriesVol. 1 John Wiley & Sons Ltd London 1–160

    Google Scholar 

  • P. Mitchell (1981b) From black-box bioenergetics to molecular mechanics: Vectorial ligand-conduction mechanisms in biochemistry V. P. Skulachev P. Hinkle (Eds) Chemiosmotic Proton Circuits in Biological Membranes Addison-Wesley Reading, Mass 611–633

    Google Scholar 

  • P. Mitchell (1981c) Ubiquinone, bioenergetics and the still point of the turning cycle K. Folkers Y. Yamamura (Eds) Biomedical and Clinical Aspects of Coenzyme Q NumberInSeriesVol. 3 Elsevier/North-Holland Amsterdam 3–15

    Google Scholar 

  • P. Mitchell (1981d) Biochemical mechanism of protonmotivated phosphorylation in F0F1 adenosine triphosphatase molecules C. P. Lee (Eds) et al. Mitochondria and Microsomes Addison-Wesley Reading, Mass 427–457

    Google Scholar 

  • P. Mitchell (1981e) ArticleTitleDavy’s electrochemistry: Nature’s protochemistry Chem in Britain 17 14–23

    Google Scholar 

  • P. Mitchell (1982) Osmoenzymology: the study of molecular machines G. Akoyunoglou (Eds) Cell Function and Differentiation NumberInSeriesVol. B Alan, R. Liss New York 399–408

    Google Scholar 

  • P. Mitchell (1984) ArticleTitleChemiosmosis: a term of abuse TIBS 9 205

    Google Scholar 

  • P. Mitchell (1985) ArticleTitleThe correlation of chemical and osmotic forces in biochemistry J. Biochem 97 1–18 Occurrence Handle2581936

    PubMed  Google Scholar 

  • P. Mitchell (1987a) Respiratory chain systems in theory and practice C. H. Kim (Eds) et al. Advances in Membrane Biochemistry and Bioenergetics Plenum Press New York 3–52

    Google Scholar 

  • P. Mitchell (1987b) Realistic models of transport processes O. L. Kon (Eds) Integration and Control of Metabolic Processes: Pure and Applied Aspects University Press Cambridge 231–245

    Google Scholar 

  • P. Mitchell (1987c) ArticleTitleA new redox loop formality involving metal-catalysed hydroxide-ion translocation: A hypothetical Cu loop formality for cytochrome oxidase FEBS Lett 222 235–245 Occurrence Handle10.1016/0014-5793(87)80378-2

    Article  Google Scholar 

  • Mitchell, P. (1988) Possible protonmotive osmochemistry in cytochrome oxidase In: Cytochrome Oxidase: Structure, Function and Physiopathology. Ann. N.Y. Acad. Sci. 550:185–198.

  • P. Mitchell (1990a) The classical mobile carrier function of lipophilic quinones in the osmochemistry of electron-driven proton translocation O. Lenaz (Eds) Highlights in Ubiquinone Research Taylor & Francis London 77–82

    Google Scholar 

  • Mitchell, P. (1990b) Osmochemistry of solute translocation. Res. Microbiol. 141: 286–289 and 384–385

    Google Scholar 

  • P. Mitchell (1991) The vital protonmotive role of coenzyme Q. K. Folkers (Eds) et al. Biomedical and Clinical Aspects of Coenzyme Q NumberInSeriesVol.6 Elsevier Amsterdam 3–10

    Google Scholar 

  • P. Mitchell J. Moyle (1951) ArticleTitleThe Glycerophospho-protein Complex Envelope of Micrococcus Pyogenes J. Gen. Microbiol 5 981–992 Occurrence Handle14908035

    PubMed  Google Scholar 

  • P. Mitchell J. Moyle (1956a) ArticleTitlePermeation mechanisms in bacterial membranes Faraday Soc. Discussions 21 258–265 Occurrence Handle10.1039/df9562100258

    Article  Google Scholar 

  • P. Mitchell J. Moyle (1956b) ArticleTitleOsmotic function and structure in bacteria Symp. Soc. Gen. Microbiol 6 150–180

    Google Scholar 

  • P. Mitchell J. Moyle (1957) ArticleTitleAutolytic release and osmotic properties of ȁ8protoplasts’ from Staphylococcus aureus J. Gen. Microbiol 16 184–194 Occurrence Handle13406228

    PubMed  Google Scholar 

  • P. Mitchell J. Moyle (1958a) ArticleTitleGroup translocation: a consequence of enzyme-catalysed group transfer Nature 182 372–373

    Google Scholar 

  • P. Mitchell J. Moyle (1958b) ArticleTitleEnzyme catalysis and group translocation Proc. Roy. Phys. Soc. Edinb 27 61–72

    Google Scholar 

  • P. Mitchell J. Moyle (1974) ArticleTitleThe mechanism of proton translocation in reversible proton-translocating adenosine triphosphatases Biochem. Soc. Spec. Publ 4 91–111

    Google Scholar 

  • P. Mitchell R. Mitchell A. J. Moody I. C. West H. Baum J. Wrigglesworth (1985) ArticleTitleChemiosmotic coupling in cytochrome oxidase: possible O loop and O cycle mechanisms FEBS Lett 188 1–7 Occurrence Handle10.1016/0014-5793(85)80863-2 Occurrence Handle2410291

    Article  PubMed  Google Scholar 

  • C. C. Moser J. M. Keske K. Warncke R. S. Farid P. L. Dutton (1992) ArticleTitleThe nature of biological electron transfer Nature 355 796–802 Occurrence Handle10.1038/355796a0 Occurrence Handle1311417

    Article  PubMed  Google Scholar 

  • Negeli K., and Cramer K. (1855–8) Series of papers. Pflanzenphysiol. Untersuchungen: Zurich Nos. 1–4

  • W. Nernst (1897) ArticleTitleZwei einfache elektrochemische Vorlesungsversuche Z. Elektrochem 3 308–309

    Google Scholar 

  • A. G. Ogston (1955) ArticleTitleActivation and inhibition of enzymes Faraday Soc. Discussions 20 161–167 Occurrence Handle10.1039/df9552000161

    Article  Google Scholar 

  • E. Overton (1895) ArticleTitleUeber die osmotischen Eigenschaften der lebenden Pflanzen- und Tierzelle Vierteljahrsschr. der naturforsch. Ges. in Zurich 40 159–201

    Google Scholar 

  • E. Overton (1899) ArticleTitleUeber die allgemeinen osmotischen Eigenschaften der Zelle, ihre vermutlichen Ursachen und ihre Bedoutung fiir die Physiologie, Vierteljahrsschr der naturforsch. Ges. in Zurich 44 88–135

    Google Scholar 

  • E. Overton (1902) ArticleTitleBeiträige zur allgemeinen Muskel- und Nervenphysiologie Pfluger’s Arch. ges. Physiol 92 115–280 Occurrence Handle10.1007/BF01659618

    Article  Google Scholar 

  • Pauling, L. (1950) Chemical achievement and hope for the future. Annu. Rep. Smithsonian Inst. 225–241

  • L. Pauling (1956) The future of enzyme research O. H. Gaebler (Eds) Enzymes: Units of Biological Structure and Function Academic Press New York 177–182

    Google Scholar 

  • H. S. Penefsky (1985) ArticleTitleEnergy-dependent dissociation of ATP from high affinity catalytic sites of beef heart mitochondrial adenosine triphosphatase J. Biol. Chem 260 13735–13741 Occurrence Handle2932442

    PubMed  Google Scholar 

  • E. Racker (1965) Mechanisms in Bioenergetics Academic Press New York and London

    Google Scholar 

  • E. Racker (1976) A New Look at Mechanisms in Bioenergetics Academic Press New York

    Google Scholar 

  • O. K. Rice H. Gershinowitz (1934) ArticleTitleEntropy and the absolute rate of chemical reactions. I. The steric factor J. Chem. Phys 2 853–861 Occurrence Handle10.1063/1.1749408

    Article  Google Scholar 

  • P. R. Rich (1991) ArticleTitleThe osmochemistry of electron-transfer complexes Biosci. Reps 11 539–571 Occurrence Handle10.1007/BF01130217

    Article  Google Scholar 

  • R. N. Robertson (1951) ArticleTitleMechanism of absorption and transport of inorganic nutrients in plants Annu. Rev. Plant Physiol 2 1–24 Occurrence Handle10.1146/annurev.pp.02.060151.000245

    Article  Google Scholar 

  • T. Rosenberg (1948) ArticleTitleOn accumulation and active transport in biological systems Acta Chem. Scand 2 14–33

    Google Scholar 

  • T. Rosenberg (1954) ArticleTitleThe concept and definition of active transport Symp. Soc. Exp. Biol 8 27–41

    Google Scholar 

  • M. H. Saier SuffixJr. J. Reizer (1990) ArticleTitleDomain shuffling during evolution of the proteins of the bacterial phosphotransferase system Res. Microbiol 141 1033–1038 Occurrence Handle10.1016/0923-2508(90)90077-4 Occurrence Handle2092356

    Article  PubMed  Google Scholar 

  • G. A. Scarborough (1985) ArticleTitleBinding energy, conformational change, and the mechanism of transmembrane solute movements Microbiol. Rev 49 214–231 Occurrence Handle2413342

    PubMed  Google Scholar 

  • A. E. Senior (1990) ArticleTitleThe proton-translocating ATPases of Escherichia coli Annu. Rev. Biophys. Chem 19 7–41 Occurrence Handle10.1146/annurev.bb.19.060190.000255

    Article  Google Scholar 

  • P. Siekevitz (1959) On the meaning of intracellular structure for metabolic regulation G. E. W. Wolstenholme C. M. O’Connor (Eds) Regulation of Cell Metabolism J. and A. Churchill Ltd London 17–45

    Google Scholar 

  • M. Silverman (1991) ArticleTitleStructure and function of hexose transporters Annu. Rev. Biochem 60 757–794 Occurrence Handle10.1146/annurev.bi.60.070191.003545 Occurrence Handle1883208

    Article  PubMed  Google Scholar 

  • V. P. Skulachev (1991) ArticleTitleChemiosmotic systems in bioenergetics Biosci. Reps 11 387–444 Occurrence Handle10.1007/BF01130214

    Article  Google Scholar 

  • C. Tanford (1983) ArticleTitleMechanism of free energy coupling in active transport Annu. Rev. Biochem 52 379–409

    Google Scholar 

  • T. Theorell (1949) ArticleTitlePermeability Annu. Rev. Physiol 11 545–564 Occurrence Handle10.1146/annurev.ph.11.030149.002553

    Article  Google Scholar 

  • H. H. Ussing (1947) ArticleTitleInterpretation of the exchange of radio-sodium in isolated muscle Nature 160 262–263

    Google Scholar 

  • H. H. Ussing (1949) ArticleTitleTransport of ions across cellular membranes Physiol. Rev 29 127–155

    Google Scholar 

  • H. H. Ussing (1950) ArticleTitleThe distinction by means of tracers between active transport and diffusion Acta Physiol. Scand 19 43–56

    Google Scholar 

  • J. H. van’t Hoff (1887) ArticleTitleDie Rolle des osmotischen Druckes in der Analogie zwischen Losungen und Gasen Z. Physikal. Chem 1 481–508

    Google Scholar 

  • M. K. F. Wikström (1977) ArticleTitleProton pump coupled to cytochrome c oxidase in mitochondria Nature 266 271–273 Occurrence Handle10.1038/266271a0 Occurrence Handle15223

    Article  PubMed  Google Scholar 

  • L.-F. Wu M. H. Saier SuffixJr. (1990) ArticleTitleOn the evolutionary origins of the bacterial phosphoenolpyruvate:sugar phosphotransferase system Mol. Microbiol 4 1219–1222 Occurrence Handle2172696

    PubMed  Google Scholar 

  • J. Wyman (1948) ArticleTitleHeme proteins Adv. Protein Chem 4 407–531

    Google Scholar 

  • J. Wyman (1964) ArticleTitleLinked functions and reciprocal effects in hemoglobin: a second look Adv. Protein Chem 19 223–286 Occurrence Handle14268785

    PubMed  Google Scholar 

  • J. Wyman (1965) ArticleTitleThe binding potential, a neglected linkage concept J. Mol. Biol 11 631–644 Occurrence Handle14267283

    PubMed  Google Scholar 

  • W. Laubinger G. Deckers-Herberstreit K. Altendorf P. Dimroth (1990) ArticleTitleA hybrid ATPase composed of F1 of Escherichia coli and F0 of Propionigenium modestum is a functional sodium ion pump Biochem 29 5458–5463 Occurrence Handle10.1021/bi00475a008

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitchell, P.D. Foundations of Vectorial Metabolism and Osmochemistry. Biosci Rep 24, 386–435 (2004). https://doi.org/10.1007/s10540-005-2739-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10540-005-2739-2

Keywords

Navigation