Skip to main content
Log in

Chemiosmotic systems in bioenergetics: H+-cycles and Na+-cycles

  • Symposium Papers
  • Published:
Bioscience Reports

Abstract

The development of membrane bioenergetic studies during the last 25 years has clearly demonstrated the validity of the Mitchellian chemiosmotic H+ cycle concept. The circulation of H+ ions was shown to couple respiration-dependent or light-dependent energy-releasing reactions to ATP formation and performance of other types of membrane-linked work in mitochondria, chloroplasts, some bacteria, tonoplasts, secretory granules and plant and fungal outer cell membranes. A concrete version of the direct chemiosmotic mechanism, in which H+ potential formation is a simple consequence of the chemistry of the energy-releasing reaction, is already proved for the photosynthetic reaction centre complexes.

Recent progress in the studies on chemiosmotic systems has made it possible to extend the coupling-ion principle to an ion other than H+. It was found that, in ceertain bacteria, as well as in the outer membrane of the animal cell, Na+ effectively substitutes for H+ as the coupling ion (the chemiosmotic Na+ cycle). A precedent is set when the Na+ cycle appears to be the only mechanism of energy production in the bacterial cell. In the more typical case, however, the H+ and Na+ cycles coexist in one and the same membrane (bacteria) or in two diffeerent membranes of one and the same cell (animals). The sets of\(\Delta \bar \mu H^ + \) and\(\Delta \bar \mu Na^ + \) generators as well as\(\Delta \bar \mu H^ + \) and\(\Delta \bar \mu Na^ + \) consumers found in different types of biomembranes, are listed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, J. P., Feher, G., Yeates, T. O., Komiya, H. and Rees, D. C. (1987) Structure of the reaction center fromRhodobacter sphaeroides R-26: The protein subunits.Proc. Natl. Acad. Sci. USA. 84:6162–6166.

    Google Scholar 

  • Amann, R., Ludwig, W., Laubinger, W., Dimroth, P. and Schleifer, K. H. (1988) Cloning and sequencing of the gene encoding the beta subunit of the sodium ion translocating ATP synthase ofPropionigenium modestum.FEMS Microbiol. Lett. 56:253–260.

    Google Scholar 

  • Amchenkova, A. A., Bakeeva, L. E., Chentsov, Yu. S., Skulachev, V. P. and Zorov, D. B. (1988) Coupling membranes as energy-transmitting cables. I. Filamentous mitochondria in fibroblasts and mitochondrial clusters in cardiomyocytes.J. Cell. Biol. 107:481–495.

    Google Scholar 

  • Anantharam, V., Allison, M. J. and Maloney, P. C. (1989) Oxalate: formate exchange. The basis for energy coupling inOxalobacter.J. Biol. Chem. 264:7244–7250.

    Google Scholar 

  • Andreyev, A. Yu., Bondareva, T. O., Dedukhova, V. I., Mokhova, E. N., Skulachev, V. P., Tsofina, L. M., Volkov, N. I. and Vygodina, T. V. (1989) The ATP/ADP-antiporter is involved in the uncoupling effect of fatty acids in mitochondria.Eur. J. Biochem. 182:585–592.

    Google Scholar 

  • Andreyev, A. Yu., Bondareva, T. O.,Dedukhova, V. I., Mokhova, E. N., Skulachev, V. P. and Volkov, N. I. (1988) Carboxyatractylate inhibits the uncoupling effect of free fatty acids.FEBS Lett. 266:265–269.

    Google Scholar 

  • Arshavsky, V. Yu., Baryshev, V. A., Brown, I. I., Glagolev, A. N. and Skulachev, V. P. (1981) Transmembrane gradient of K+ and Na+ ions as an energy buffer in:Halobacterium halobium cells.FEBS Lett. 133:22–26.

    Google Scholar 

  • Asano, M., Hayashi, M., Unemoto, T. and Tokuda, H. (1985) Ag+-sensitive NADH dehydrogenase in the Na+-motive respiratory chain of the marine bacteriumVibrio alginolyticus.Agric. Biol. Chem. 49:2813–2817.

    Google Scholar 

  • Avetisyan, A. V., Dibrov, P. A., Skulachev, V. P. and Sokolov, M. V. (1989) The Na+-motive respiration inEscherichia coli.FEBS Lett. 254:17–21.

    Google Scholar 

  • Avetisyan, A. V., Dibrov, P. A., Semeykina, A. L., Skulachev, V. P. and Sokolov, M. V. (1991) Adaptation ofBacillus FTU andEscherichia coli. to alkaline conditions: Na+-motive respiration.Biochim. Biophys. Acta (accepted).

  • Baeuerlein, E. (1989) The ATP synthase and the bacterial flagellar apparatus—two energy transducers of the cytoplasmic membrane.Hoppe Seyler Z. physiol. Chem. 370:642.

    Google Scholar 

  • Bakeeva, L. E., Chentsov, Yu. S. and Skulachev, V. P. (1978) Mitochondrial framework (Reticulum mitochondriale) in rat diaphragm muscle.Biochem. Biophys. Acta 501:349–369.

    Google Scholar 

  • Bakeeva, L. E., Chentsov, Yu. S. and Skulachev, V. P. (1983) Intermitochondrial contacts in myocardiocytes.J. Mol. Cell Cardiol. 15:413–420.

    Google Scholar 

  • Bakeeva, L. E., Chumakov, K. M., Drachev, A. L., Metlina, A. L. and Skulachev, V. P. (1986) The sodium cycle. III.Vibrio alginolyticus resembles V. cholerae and some other vibriones by flagellar motor and ribosomal 5S-RNA structures.Biochim. Biophys. Acta 850:466–472.

    Google Scholar 

  • Bakeeva, L. E., Shevelev, A. A., Chentsov, Yu. S. and Skulachev, V. P. (1985) A freeze-fracture study on mitochondrial junctions in rat cardiomyocytes.Biol. membrany 2:133–143 (Russ.)

    Google Scholar 

  • Baltscheffsky, H., Von Stedingk, L.-V., Heldt, H. W. and Klingenberg, M. (1966) Inorganic pyrophosphate: formation in bacterial photophosphorylation.Science 153:1120–1124.

    Google Scholar 

  • Baltscheffsky, H. and Nyren, P. (1987) PPi in the energy conversion system ofRhodospirillum rubrum. In:Phosphate Metabolism and Cellular Regulation in Microorganisms. (Torriani-Gorini, A., Rothman, F. G., Silver, S., Wright, A., Yagil, E., Eds). American Society of Microbiology, Washington, pp. 260–263.

    Google Scholar 

  • Basilana, M., Diamino-Forano, E. and Leblanc, G. (1985) Effect of membrane potential on the kinetic parameters of the Na+ or H+ melibiose symport inEscherichia coli membrane vesicles.Biochem. Biophys. Res. Commun. 129:626–631.

    Google Scholar 

  • Belyakova, T. N., Glagolev, A. N. and Skulachev, V. P. (1976) Bacterial motility is directly supported by electrochemical H+ gradient.Biokhimiya 41:1478–1483 (Russ.).

    Google Scholar 

  • Benyoucef, M., Rigaud, J.-L. and Leblanc, G. (1982) Cation transport mechanisms inMycoplasma myocides var. Capri cells: The nature of the link between K+ and Na+ transport.Biochem. J. 208:539–547.

    Google Scholar 

  • Berg, H. C., Manson, M. D. and Conley, M. P. (1982) Dynamics and energetics of flagellar rotation in bacteria.Symp. Soc. Exp. Biol. 35:1–31.

    Google Scholar 

  • Boyer, P. D. (1988) Should we be considering hydronium ion coordination and not group protonation for bioenergetic coupling to protonmotive force?TIBS 13:5–7.

    Google Scholar 

  • Boyer, P. D. (1989) A perspective of the binding change mechanism for ATP synthesis.FASEB 3:2164–2178.

    Google Scholar 

  • Brown, I. I., Galperin, M. Yu., Glagolev, A. N. and Skulachev, V. P. (1983) Utilization of energy stored in the form of Na+ and K+ ion gradient by bacterial cells.Eur. J. Biochem. 134:345–349.

    Google Scholar 

  • Brustovetsky, N. N., Amerkhanov, Z. G., Yegorova, M. E., Mokhova, E. N. and Skulachev, V. P. (1990a) Carboxyatractylate-sensitive uncoupling in liver mitochondria from ground squirrels during hibernation and arousal.FEBS Lett. 272:190–192.

    Google Scholar 

  • Brustovetsky, N. N., Dedukhova, V. I., Yegorova, M. E., Mokhova, E. N. and Skulachev, V. P. (1990b) Inhibitors of the ATP/ADP anti-porter suppress stimulation of mitochondrial respiration and H+ permeability by palmitate and anionic detergents.FEBS Lett. 272:187–189.

    Google Scholar 

  • Buckel, W. (1986) Biotin-dependent decarboxylases as bacterial sodium pumps: purification and reconstitution of gutaconyl-CoA decarboxylase fromAcidaminococcus fermentans.Methods Enzymol. 125:547–558.

    Google Scholar 

  • Butt, H. J., Fendler, K., Bamberg, E., Tittor, J. and Oesterhelt, D. (1989) Aspartic acids 96 and 85 play a central role in the function of bacteriorhodopsin as a proton pump.EMBO J. 4:1657–1663.

    Google Scholar 

  • Chernyak, B. V., Dibrov, P. A., Glagolev, A. N., Sherman, M. Yu. and Skulachev, V. P. (1983) A novel type of energetics in a marine alkali-tolerant bacterium.\(\Delta \bar \mu Na^ + \) motility and sodium cycle.FEBS Lett. 164:38–42.

    Google Scholar 

  • Danielson, L. and Ernster, L. (1963) Energy-dependent reduction of triphosphopyridine nucleotide by reduced diphosphopyridine nucleotide, coupled to the energy transfer system of the respiratory chain.Biochem. Z. 338:188–205.

    Google Scholar 

  • Danshina, S. V., Drachev, L. A., Kaulen, A. D., Khorana, H. G., Marti, T., Mogi, T. and Skulachev, V. P. (1991a) Mechanism of the H+ transport by bacteriorhodopsin: a study on Asp-96 mutants.Biokhimiya (Russ.) (in press).

  • Danshina, S. V., Drachev, L. A., Kaulen, A. D. and Skulachev, V. P. (1991b) The inward H+ pathway in bacteriorhodopsin: the role of M412 and P(N)560 intermediates.Photochem. Photobiol. (in press).

  • Deisenhofer, J., Epp. O., Miki, K., Huber, R. and Michel, H. (1984) X-ray structure analysis of a membrane protein complex. Electron density map at 3 Å resolution and a model of the chromophores of the photosynthetic reaction center fromRhodopseudomonas viridis.J. Mol. Biol.,180:385–398.

    Google Scholar 

  • Deisenhofer, J., Epp, O., Miki, K., Huber, R. and Michel, H. (1985a) Structure of the protein subunits in the photosynthetic reaction centre ofRhodopseudomonas viridis at 3 Å resolution.Nature 318:618–624.

    Google Scholar 

  • Deisenhofer, J., Michel, H. and Huber, R. (1985b) The structural basis of photosynthetic light reactions in bacteria.TIBS 10:234–248.

    Google Scholar 

  • Denda, K., Konishi, J., Oshima, T., Date, T. and Yoshida, M. (1988a) The membrane-associated ATPase fromSulfolobus acidocaldarius is distantly related to F1-ATPase as assessed from primary structure of its α-subunit.J. Biol. Chem. 263:6012–6015.

    Google Scholar 

  • Denda, K., Konishi, J., Oshima, T., Date, T. and Yoshida, M. (1988b) Molecular cloning of the β-subunit of a possible non-F0F1 type ATP synthase from the acidothermophilic archaebacterium,Sulfolobus acidocaldarius.J. Biol. Chem. 263:17251–17254.

    Google Scholar 

  • Deprez, J., Trissl, H.-W. and Breton, J. (1986) Excitation trapping and primary charge stabilization inRhodopseudomonas viridis cells, measured electrically with picosecond resolution.Proc. Natl. Acad. Sci. USA 83:1699–1703.

    Google Scholar 

  • Dibrov, P. A., Lazarova, R. L., Skulachev, V. P. and Verkhovskaya, M. L. (1986) The sodium cycle. II. Na+-dependent oxidative phosphorylation inVibrio alginolyticus.Biochim. Biophys. Acta 850:458–465.

    Google Scholar 

  • Dibrov, P. A., Lazarova, R. L., Skulachev, V. P. and Verkhovskaya, M. L. (1989) A study on Na+-coupled oxidative phosphorylation: ATP formation supported by artificially imposed ΔpNa and ΔΨ inVibrio alginolyticus cells.J. Bioenerg. Biomembr. 21:347–357.

    Google Scholar 

  • Dibrov, P. A., Skulachev, V. P., Sokolov, M. V. and Verkhovskaya, M. L. (1988) The ATP-driven primary Na+ pump in subcellular vesicles ofVibrio anginolyticus.FEBS Lett. 233:355–358.

    Google Scholar 

  • Dierks, T., Salentin, A., Heberger, G. and Krämer, R. (1990a) The mitochondrial aspartate/glutamate and ADP/ATP carrier switch from obligate counterexchange to unidirectional transport after modification by SH-reagents.Biochim. Biophys. Acta 1028:268–280.

    Google Scholar 

  • Dierks, T., Salentin, A. and Krämer, R. (1990b) Pore-like and carrier-like properties of the mitochondrial aspartate/glutamate carrier after modification by SH-reagents: evidence for a preformed channel as a structural requirement of carrier-mediated transport.Biochim. Biophys. Acta 1028:281–288.

    Google Scholar 

  • Dimroth, P. (1980) A new sodium-transport system energized by the decarboxylation of oxaloacetate.FEBS Lett. 122:234–236.

    Google Scholar 

  • Dimroth, P. (1982) The role of biotin and sodium in the decarboxylation of oxaloacetate by the membrane-bound oxaloacetate decarboxylase fromKlebsiella aerogenes.Eur. J. Biochem. 121:435–441.

    Google Scholar 

  • Dimroth, P. (1987) Sodium ion transport decarboxylases and other aspects of sodium ion cycling in bacteria.Microbiol. Rev. 51:320–340.

    Google Scholar 

  • Dimroth, P. and Thomer, A. (1986) Citrate transport inKlebsiella pneumoniae.Biol. Chem. Hoppe-Seyler 367:813–823.

    Google Scholar 

  • Dimroth, P. and Thomer, A. (1988) Dissociation of the sodium ion-translocating oxaloacetate decarboxylase ofKlebsiella pneumoniae and reconstitution of the active complex from the isolated subunits.Eur. J. Biochem. 175:175–180.

    Google Scholar 

  • Dimroth, P. and Thomer, A. (1989) A primary respiratory Na+ pump of an anaerobic bacterium: the Na+-dependent NADH: quinone oxidoreductase.Arch. Microbiol. 151:439–444.

    Google Scholar 

  • Dmitriev, O. Yu., Grinkevich, V. A. and Skulachev, V. P. (1989) The F1-ATPase ofVibrio alginolyticus. Purification and N-terminal sequences of major subunits.FEBS Lett. 258:219–222.

    Google Scholar 

  • Drachev, L. A., Kaulen, A. D., Khorana, H. G., Mogi, T., Otto, H., Skulachev, V. P., Heyn, M. P. and Holz, M. (1989a) Participation of the Asp-96 carboxyl in H+ transfer along the inward proton-conducting pathway of bacteriorhodopsin.Biokhimiya 54:1467–1477 (Russ.).

    Google Scholar 

  • Drachev, L. A., Kaulen, A. D. and Skulachev, V. P. (1978) Time resolution of the intermediate steps in the bacteriorhodopsin-linked electrogenesis.FEBS Lett. 87:161–167.

    Google Scholar 

  • Drachev, L. A., Kaulen, A. D. and Skulachev, V. P. (1984) Correlation of photochemical cycle, H+-release and uptake, and electric events in bacteriorhodopsin.FEBS Lett. 178:331–335.

    Google Scholar 

  • Drachev, L. A., Kaulen, A. D. and Zorina, V. V. (1989b) Light-scattering changes in the bacteriorhodopsin photocycle.FEBS Lett. 243:5–7.

    Google Scholar 

  • Dracheva, S. M., Drachev, L. A., Konstantinov, A. A., Semenov, A. Yu., Skulachev, V. P., Arutjunjan, A. M., Shuvalov, V. A. and Zaberezhnaya, S. (1988) Electrogenic step in the redox reactions catalyzed by photosynthetic center complexes fromRhodopseudomonas viridis.Eur. J. Biochem. 171:253–264.

    Google Scholar 

  • Driks, A. and DeRosier, D. J. (1990) Additional structures associated with bacterial flagellar basal body.J. Mol. Biol. 211:669–672.

    Google Scholar 

  • Dupaix, A., Johannin, G. and Arrio, B. (1989) ATP synthesis and pyrophosphate-driven proton transport in tonoplast-enriched vesicles isolated fromCatharanthus roseus.FEBS Lett. 249:13–16.

    Google Scholar 

  • Efiok, B. J. S. and Webster, D. A. (1990a) Respiratory-driven Na+ electrochemical potential in the bacteriumVitreoscilla.Biochemistry 29:4734–4739.

    Google Scholar 

  • Efiok, B. J. S., and Webster, D. A. (1990b) A cytochrome that can pump sodium ion.Biochem. Biophys. Res. Communs. 173:370–375.

    Google Scholar 

  • Endicott, J. A. and Ling, V. (1989) The biochemistry of p-glycoprotein-mediated multidrug resistance.Ann. Rev. Biochem. 58:137–171.

    Google Scholar 

  • Engelgard, M., Hess, B., Metz, G., Krentz, N., Siebert, F., Soppa, J. and Oesterhelt, D. (1990) High resolution13C-solid state NMR of bacteriorhodopsin: assignment of specific aspartic acids and structural implications of single site mutations.Eur. Biophys. J. 18:17–24.

    Google Scholar 

  • Ferris, F. G., Beveridge, T. J., Marcean-Day, M. L. and Larson, A. D. (1984) Structure and cell envelope associations of flagellar basal complexes ofVibrio cholerae andCampylobacter fetus.Can. J. Microbiol. 30:322–339.

    Google Scholar 

  • Garlid, K. D. (1990a) New insights into mechanisms of anion uniport through the uncoupling protein of brown adipose tissue mitochondria.Biochim. Biophys. Acta 1018:151–154.

    Google Scholar 

  • Garlid, K. D. (1990b) Anion uniport through the uncoupling protein. Report at 6th EBEC, Nordwijkerhout.

  • Gerwert, K., Hess, B., Soppa, J. and Oesterhelt, D. (1989) Role of aspartate-96 in proton translocation by bacteriorhodopsin.Proc. Natl. Acad. Sci. USA 86:4943–4947.

    Google Scholar 

  • Glagolev, A. N. and Skulachev, V. P. (1978) The proton pump is a molecular engine of motile bacteria.Nature 272:280–282.

    Google Scholar 

  • Glagoleva, T. N., Glagolev, A. N., Gusev, M. V. and Nikitina, K. A. (1980) Proton motive force supports gliding in cyanobacteria.FEBS Lett. 117:49–53.

    Google Scholar 

  • Gottschalk, G. and Blaut, M. (1990) Generation of proton and sodium motive forces in methanogenic bacteria.Biochim. Biophys. Acta 1018:263–266.

    Google Scholar 

  • Grav, H. J. and Blix, A. S. (1979) A source of nonshivering thermogenesis in fur seal skeletal muscle.Science 204:87–89.

    Google Scholar 

  • Guffanti, A. A. and Krulwich, T. A. (1988) ATP synthesis is driven by an imposed ΔpH or\(\Delta \bar \mu H^ + \) but not by an imposed ΔpNa+ or\(\Delta \bar \mu Na^ + \) in alkalophilicBacillus firmus OF4.J. Biol. Chem. 263:14748–14752.

    Google Scholar 

  • Hara, Y., Yamada, J. and Nakao, M. (1986) Proton transport catalyzed by the sodium pump. Ouabain-sensitive ATPase activity and the phosphorylation of Na, K-ATPase in the absence of sodium ions.J. Biochem. 99:531–539.

    Google Scholar 

  • Harold, F. M. (1977) Ion currents and physiological functions in microorganisms.Annu. Rev. Microbiol. 31:181–203.

    Google Scholar 

  • Harold, F. M., Pavlasova, E. and Baarda, J. R. (1970) A transmembrane pH gradient inStreptococcus faecalis: origin and dissipation by proton conductors and N,N′-dicyclohexylcarbodiimide.Biochim. Biophys. Acta 196:235–244.

    Google Scholar 

  • Hartl, F.-U., Pfanner, N., Nicholson, D. W. and Neupert, W. (1989) Mitochondrial protein import.Biochim. Biophys. Acta 988:1–45.

    Google Scholar 

  • Hayashi, M. and Unemoto, T. (1986) FAD and FMN flavoproteins participate in the sodium-transport respiratory chain NADH: quinone reductase of a marine bacterium,Vibrio alginolyticus.FEBS Lett. 202:327–330.

    Google Scholar 

  • Hayashi, M. and Unemoto, T. (1987) Subunit components and their roles in the sodium-transport NADH:quinone reductase of a marine bacterium,Vibrio alginolyticus.biochim. Biophys. Acta 890:47–54.

    Google Scholar 

  • Heefner, D. L. and Harold, F. M. (1982) ATP-driven sodium pump inStreptococcus faecalis.Proc. Natl. Acad. Sci. USA 79:2798–2802.

    Google Scholar 

  • Henderson, P. J. F. (1990) Proton-linked sugar transport systems in bacteria.J. Bioenerg. Biomembr. 22:525–569.

    Google Scholar 

  • Henderson, P. J. F. (1991) Studies of translocation catalysis.Biosci. Reps. 11:477–538.

    Google Scholar 

  • Henderson, R., Baldwin, J. M., Ceska, T. A., Zemlin, F., Beckmann, E. and Downing, K. H. (1990) Model for the structure of bacteriorhodopsin based on high-resolution electron cryomicroscopy.J. Mol. Biol. 213:899–929.

    Google Scholar 

  • Hilpert, W. and Dimroth, P. (1983) Purification and characterization of a new sodium-transport decarboxylase. Methylmalonyl-CoA decarboxylase fromVeilonella alcalencens.Eur. J. Biochem. 132:579–587.

    Google Scholar 

  • Hilpert, W. and Dimroth, P. (1984) Reconstitution of Na+ transport from purified methylmalonyl-CoA decarboxylase and phospholipid vesicles.Eur. J. Biochem. 138:579–583.

    Google Scholar 

  • Hilpert, W., Schink, B. and Dimroth, P. (1984) Life by a new decarboxylation-dependent energy conservation mechanism with Na+ as coupling ion.EMBO J. 3:1665–1680.

    Google Scholar 

  • Hirota, N. and Imae, Y. (1983) Na+-driven flagellar motors of an alkalophilicBacillus strain YN-1.J. Biol. Chem. 258:10577–10581.

    Google Scholar 

  • Hirota, N., Kitada, M. and Imae, Y. (1981) Flagellar motors of alkalophilicBacillus are powered by an electrochemical potential gradient of Na+.FEBS Lett. 132: 278–280.

    Google Scholar 

  • Hoek, J. B. and Rydström, J. (1988) Physiological roles of nicotinamide nucleotide transhydrogenase.Biochem. J. 254:1–10.

    Google Scholar 

  • Hoffman, A., Hilpert, W. and Dimroth, P. (1989) The carboxyl-transferase activity of the sodium-ion-translocating methyl-malonyl-CoA decarboxylase ofVeilonella alcalescens.Eur. J. Biochem. 179:645–650.

    Google Scholar 

  • Hoffman, A., Laubinger, W. and Dimroth, P. (1990) Na+-coupled ATP synthesis inPropionigenium modestum: is it a unique system?Biochim. Biophys. Acta 1018:206–210.

    Google Scholar 

  • Holz, M., Drachev, L. A., Mogi, T., Otto, H., Kaulen, A. D., Heyn, M. P., Skulachev, V. P. and Khorana, H. G. (1989) The Asp-86→Asn mutation of bacteriorhodopsin slows down the decay of M and the reprotonation phase of the charge translocation.Proc. Natl. Acad. Sci. USA 86:2167–2171.

    Google Scholar 

  • Hoshi, T. and Himukai, M. (1982) Na+-coupled transport of organic solutes in animal cells. In:Transport and bioenergetics in biomembranes (Sato, R. and Kagawa, Y., eds) Jpn. Sci. Soc. Press, Tokyo, pp. 111–135.

    Google Scholar 

  • Ihara, K. and Mukohata, Y. (1991) Amino acid sequences of two major subunits of the ATP synthase of an extremely halophilic archaebacterium,Halobacterium salinarium (Halobium). Arch. Biochem. Biophys. (in press).

  • Imae, Y. and Atsumi, T. (1989) Na+-driven bacterial flagellar motors.J. Bioenerg. Biomembr. 21:705–716.

    Google Scholar 

  • Inatomi, K.-I., Eya, S., Maeda, M. and Futai, M. (1989) Amino acid sequences of the α and β subunits ofMethanosarcina barkeri ATPase deduced from cloned genes.J. Biol. Chem. 264:10954–10959.

    Google Scholar 

  • Isaev, P. I., Liberman, E. A., Samuilov, V. D., Skulachev, V. P. and Tsofina, L. M. (1970) Conversion of biomembrane-produced energy into electric form. III. Chromatophores ofRhodospirillum rubrum.Biochim. Biophys. Acta 216:22–29.

    Google Scholar 

  • Kaback, H. R. (1990) Thelac permease ofEscherichia coli: a prototypic energy-transducing membrane protein.Biochim. Biophys. Acta 1018:160–162.

    Google Scholar 

  • Kaback, H. R., Bibi, E. and Roepe, P. D. (1990) β-Galactoside transport inE. coli: a functional dissection oflac permease.TIBS 15:309–314.

    Google Scholar 

  • Kaesler, B. and Schönheit, P. (1989) The role of sodium ions in methanogenesis. Formaldehyde oxidation to CO2 and 2H2 in methanogenic bacteria is coupled with primary electrogenic Na+ translocation at a stoichiometry of 2–3 Na+/CO2.Eur. J. Biochem. 184:223–232.

    Google Scholar 

  • Kakinuma, Y. and Harold, F. M. (1985) ATP-driven exchange of Na+ for K+ ions byStreptococcus faecalis.J. Biol. Chem. 260:2086–2091.

    Google Scholar 

  • Kakinuma, Y. and Igarashi, K. (1989) Sodium-translocating adenosine triphosphatase inStreptococcus faecalis.J. Bioenerg. Biomembr. 21:679–691.

    Google Scholar 

  • Kakinuma, Y. and Igarashi, K. (1990) Some features of theStreptococcus faecalis Na+-ATPase resemble those of the vacuolar-type ATPases.FEBS Lett. 271:97–101.

    Google Scholar 

  • Kakinuma, Y. and Unemoto, T. (1985) Sucrose uptake is driven by the Na+ electrochemical potential in the marine bacteriumVibrio alginolyticus.J. Bacteriol. 163:1293–1295.

    Google Scholar 

  • Ken-Dror, S., Lanyi, J. K., Schöbert, B., Silver, B. and Avi-Dor, Y. (1986) An NADH: quinone oxidoreductase of halotolerant bacterium Ba1 is specifically dependent on sodium ions.Arch. Biochem. Biophys. 244:766–772.

    Google Scholar 

  • Khan, S. and Berg, H. C. (1983) Isotope and thermal effects in chemiosmotic coupling to the flagellar motor ofStreptococcus.Cell 32:913–919.

    Google Scholar 

  • Khan, S., Dapice, M. and Reese, T. S. (1988) Effects ofmot gene expression on the structure of the flagellar motor.J. Mol. Biol. 202:575–584.

    Google Scholar 

  • Kinoshita, N., Unemoto, T. and Kobayashi, H. (1984) Sodium-stimulated ATPase inStreptococcus faecalis.J. Bacteriol. 158:844–848.

    Google Scholar 

  • Kitada, M., Guffanti, A. A. and Krulwich, T. A. (1982) Bioenergetic properties and viability of alkalophilicBacillus firmus RAB as a function of pH and Na+ contents of incubation medium.J. Bacteriol. 152:1096–1104.

    Google Scholar 

  • Knaff, D. B. (1988) The photosystem I reaction centre.TIBS 13:460–461.

    Google Scholar 

  • Kobayashi, H., Suzuki, T., Kinoshita, N. and Unemoto, T. (1984) Amplification of theStreptococcus faecalis proton-translocating ATPase by a decrease in cytoplasmic pH.J. Bacteriol. 158:1157–1160.

    Google Scholar 

  • Kobayashi, H. (1988) Diffusion motor as a model of flagellar motor of bacteria.Ferroelectrics 86:335–346.

    Google Scholar 

  • Kondrashin, A. A., Remennikov, V. G., Samuilov, V. D. and Skulachev, V. P. (1980) Reconstitution of biological molecular generators of electric current. Inorganic pyrophosphatase.Eur. J. Biochem. 113:219–222.

    Google Scholar 

  • Konstantinov, A. A. (1990) Vectorial electron and proton transfer steps in the cytochromebc 1 complex.Biochim. Biophys. Acta 1018:138–141.

    Google Scholar 

  • Kostyrko, V. A., Semeykina, A. L., Skulachev, V. P., Smirnova, I. A., Vaghina, M. L. and Verkhovskaya, M. L. (1991) The H+-motive and Na+-motive respiratory chains inBacillus FTU subcellular vesicles.Eur. J. Biochem. (in press).

  • Kotyk, A. (1983) Coupling of secondary active transport with\(\Delta \bar \mu H^ + \).J. Bioenerg. Biomembr. 15:307–319.

    Google Scholar 

  • Krulwich, T. A. (1983) Na+/H+ antiporter.Biochim. Biophys. Acta 726:245–264.

    Google Scholar 

  • Krulwich, T. A. and Guffanti, A. A. (1989) Alkalophilic bacteria.Annu. Rev. Microbiol. 43:435–463.

    Google Scholar 

  • Krumholz, L. R., Esser, U. and Simoni, R. D. (1989) Nucleotide sequence of theunc operon ofVibrio alginolyticus.Nucl. Acids Res. 16:7993–7994.

    Google Scholar 

  • Kupper, J., Wildhaber, I., Gao, Z. and Baeuerlein, E. (1989) Basal-body associated disks are additional structural elements of the flagellum apparatus isolated fromWolinella succinogenes.J. Bacteriol. 171:2803–2810.

    Google Scholar 

  • Lai, S., Randall, S. K. and Sze, H. (1988) Peripheral and integral subunits of the tonoplasts H+-ATPase from oat roots.J. Biol. Chem. 263:16731–16737.

    Google Scholar 

  • Larsen, S. H., Adler, J., Gargus, J. J. and Hogg, R. W. (1974) Chemomechanical coupling without ATP: the source of energy for motility and chemotaxis in bacteria.Proc. Natl. Acad. Sci. USA 71:1239–1243.

    Google Scholar 

  • Laubinger, W. and Dimroth, P. (1989) The sodium ion translocating adenosinetriphosphatase ofPropionigenium modestum pumps protons at low sodium ion concentrations.Biochemistry 28:7194–7198.

    Google Scholar 

  • Lee, C. P. and Ernster, L. (1964) Equilibrium studies of the energy-dependent and non-energy-dependent pyrimidine nucleotide transhydrogenase reactions.Biochim. Biophys. Acta 81:187–190.

    Google Scholar 

  • Levachev, M. M., Mishukova, E. A., Sivkova, V. G. and Skulachev, V. P. (1965) Energetics of pigeon at self-warming after hypothermia.Biokhimaya 30:864–874 (Russ.).

    Google Scholar 

  • Liu, J. Z., Dapice, M. and Khan, S. (1990) Ion selectivity of theVibrio alginolyticus flagellar motor.J. Bacteriol. 172:5236–5244.

    Google Scholar 

  • Lübben, M., Lünsdorf, H. and Schäfer, G. (1988) Archaebacterial ATPase: studies on subunit composition and quaternary structure of the F1-analogous ATPase fromSulfolobus acidocaldarius.Biol. Chem. Hoppe-Seyler,369:1259–1266.

    Google Scholar 

  • Ludwig, W., Kaim, G., Laubinger, W., Dimroth, P., Hoppe, J. and Schleifer, K. H. (1990) Sequence of subunitc of the sodium ion translocating adenosine triphosphate synthase ofPropionogenium modestum.Eur. J. Biochem. 193:395–399.

    Google Scholar 

  • Mandel, M., Moriyama, Y., Hulmes, J. D., Pan, Y.-C. E., Nelson, H. and Nelson, N. (1988) cDNA sequence encoding the 16-kDa proteolipid of chromaffin granules implies gene duplication in the evolution of H+-ATPases.Proc. Natl. Acad. Sci. USA 85:5521–5524.

    Google Scholar 

  • Manson, M. D., Tedesco, P. M. and Berg, H. C. (1980) Energetics of flagellar rotation in bacteria.J. Mol. Biol. 138:541–561.

    Google Scholar 

  • Matsuura, S., Shioi, J.-I. and Imae, Y. (1977) Motility inBacillus subtilis driven by an artificial proton-motive force.FEBS Lett. 82:187–190.

    Google Scholar 

  • Meister, M., Lowe, G. and Berg, H. C. (1987) The proton flux through the bacterial flagellar motor.Cell 49:643–650.

    Google Scholar 

  • Metlina, A. L. and Bakeeva, L. E. (1989) An additional structural component in the basal bodies ofEscherichia coli andVibrio alginolyticus flagella.Microbioligiya 58:624–626 (Russ.).

    Google Scholar 

  • Michels, M. and Bakker, E. P. (1985) Generation of a large protonophore-sensitive proton motive force and pH difference in the acidophilic bacteriaThermoplasma acidophilum andBacillus acidocaldarium.J. Bacteriol. 161:231–237.

    Google Scholar 

  • Mitchell, P. (1956) Hypothetical thermokinetic and electrokinetic mechanisms of locomotion in microorganisms.Proc. Roy Phys. Soc., Edinburgh Section25:32–34.

    Google Scholar 

  • Mitchell, P. (1957) A general theory of membrane transport from studies of bacteria.Nature 180:134–136.

    Google Scholar 

  • Mitchell, P. (1959) Structure and functions in microorganisms.Biochem. Soc. Symposia 16:73–93.

    Google Scholar 

  • Mitchell, P. (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism.Nature 191:144–148.

    Google Scholar 

  • Mitchell, P. (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation.Biol. Rev. 41:445–502.

    Google Scholar 

  • Mitchell, P. (1968)Chemiosmotic coupling and energy transduction. Glynn Research, Bodmin.

    Google Scholar 

  • Mitchell, P. (1975a) Protonmotive redox mechanism of the cytochromeb-c 1 complex in the respiratory chain: protonmotive ubiquinone cycle.FEBS Lett. 56:1–6.

    Google Scholar 

  • Mitchell, P. (1975b) The protonmotive Q cycle: a general formulation.FEBS Lett. 59:137–139.

    Google Scholar 

  • Mitchell, P. (1976) Possible molecular mechanisms of the proton motive function of cytochrome systems.J. Theor. Biol. 62:327–367.

    Google Scholar 

  • Mitchell, P. (1984) Bacterial flagellar motors and osmoelectric molecular rotation by an axially transmembrane well and turnstile mechanism.FEBS Lett. 176:287–294.

    Google Scholar 

  • Mitchell, P. (1990) Osmochemistry of solute translocation.Res. Microbiol. 141:286–289 and 384–385.

    Google Scholar 

  • Mitchell, P. and Moyle, J. (1958) Enzyme catalysis and group-translocation.Proc. Roy. Phys. Soc., Edinburgh27:61–72.

    Google Scholar 

  • Mozhayeva, G. N. and Naumov, A. P. (1983) The permeability of sodium channels to hydrogen ions in nerve fibres.Pflugers Arch. 396:163–173.

    Google Scholar 

  • Mukohata, Y., Ihara, K., Kishino, H., Hasegawa, M., Iwabe, N. and Miyata, T. (1990) Close evolutionary relatedness of archaebacteria with eukaryotes.Proc. Japan Acad. Ser. B.66:63–67.

    Google Scholar 

  • Müller, V., Kozianowski, G., Blaut, M. and Gottschalk, G. (1987) Methanogenesis from trimethylamine+H2 byMethanosarcina barkeri is coupled to ATP formation by a chemiosmotic mechanism.Biochim. Biophys. Acta 892:297–312.

    Google Scholar 

  • Müller, V., Winner, C. and Gottschalk, G. (1988) Electron-transport-driven sodium extrusion during methanogenesis from formaldehyde and molecular hydrogen byMethanosarcina barkeri.Eur. J. Biochem. 178:519–525.

    Google Scholar 

  • Muntyan, M. S., Mesyanzhinova, I. V., Milgrom, Ya. M. and Skulachev, V. P. (1990) The F1-type ATPase in anaerobicLactobacillus casei.Biochim. Biophys. Acta,1016:371–377.

    Google Scholar 

  • Murphy, D. J. (1986) The molecular organization of the photosynthetic membranes of higher plants.Biochim. Biophys. Acta 864:33–94.

    Google Scholar 

  • Nanba, T. and Mukohata, Y. (1987) A membrane-bound ATPase fromHalobacterium halobium: purification and characterization.J. Biochem. 102:591–598.

    Google Scholar 

  • Nelson, H., Mandiyan, S., Noumi, T., Moriyama, Y., Miedel, M. C. and Nelson, N. (1990) Molecular cloning of cDNA encoding thec subunit of H+-ATPase from bovine chromaffin granules.J. Biol. Chem. 265:20390–20393.

    Google Scholar 

  • Nelson, N. (1988) Structure, function, and evolution of proton-ATPasesPlant Physiol. 86:1–3.

    Google Scholar 

  • Nicholls, D. G. (1976) The bioenergetics of brown adipose tissue mitochondria.FEBS Lett. 61:103–110.

    Google Scholar 

  • Nyren, P. and Baltscheffsky, M. (1983) Inorganic pyrophosphate-driven ATP-synthesis in liposomes containing membrane-bound inorganic pyrophosphatase and F0F1 complex fromRhodospirrilum rubrum.FEBS Lett. 155:125–130.

    Google Scholar 

  • Okamura, M. Y., Feher, G. and Nelson, N. (1982) Reaction centers. In:Photosynthesis: Energy conservation by plants and bacteria. (Govindjee, Ed.). Academic Press, New York, pp. 195–272.

    Google Scholar 

  • Otto, H., Marti, T., Holz, M., Mogi, T., Lindau, M., Khorana, H. G. and Heyn, M. P. (1989) Aspartic acid-96 is the internal proton donor in the reprotonation of the Schiff base of bacteriorhodopsin.Proc. Natl. Acad. Sci USA 86:9228–9232.

    Google Scholar 

  • Pain, D., Murakami, M. and Blobel, G. (1990) Identification of a receptor for protein import into mitochondria.Nature 347:444–449.

    Google Scholar 

  • Pfanner, N. and Neupert, W. (1985) Transport of proteins into mitochondria: a potassium diffusion potential is able to drive the import of ADP/ATP carrier.EMBO J. 4:2819–2825.

    Google Scholar 

  • Pfanner, N., Rassow, J. Guiard, B., Söllner, T., Harti, F.-U. and neupert, W. (1990) Energy requirements for unfolding and membrane translocation of precursor proteins during import into mitochondria.J. Biol. Chem. 265:16324–16329.

    Google Scholar 

  • Polvani, C. and Blostein, R. (1988) Protons as substitutes for sodium and potassium in the sodium pump reaction.J. Biol. Chem. 263:16757–16763.

    Google Scholar 

  • Racker, E. (1976) A new look at mechanisms in bioenergetics. Acad. Press, New York-San Francisco-London.

    Google Scholar 

  • Ragan, C. I. (1987) Structure of NADH-ubiquinone reductase (complex I).Curr. Top. Bioenerg., Acad. Press, San Diego (Lee, C. P., Ed.), pp. 1–36.

    Google Scholar 

  • Rassow, J., Hartl, F.-U., Guiard, B., Pfanner, N. and Neupert, W. (1990) Polypeptides traverse the mitochondrial envelope in an extended state.FEBS Lett. 275:190–194.

    Google Scholar 

  • Rea Pa and Poole, R. J. (1985) Proton-translocating inorganic pyrophosphatase in red beet, (Beta vulgaris L.) tonoplast vesicles.Plant Physiol. 77:46–52.

    Google Scholar 

  • Remsen, C. C., Watson, S. W., Waterbury, J. B. and Trüper, H. G. (1968) Fine structure ofEctohiorhodopsin mobilis pelsh.J. Bacteriol. 95:2374–2392.

    Google Scholar 

  • Rich, P. R. (1991) The osmochemistry of electron-transfer complexes.Biosci. Reps. 11:539–571.

    Google Scholar 

  • Rohde, M., Dakena, P., Mayer, F. and Dimroth, P. (1986) Morphological properties of proteolipo somes reconstituted with the Na+ pump methylmalonyl-CoA decarboxylase, fromVeillonella alcalescens.FEBS Lett. 195:280–284.

    Google Scholar 

  • Roos, N., Benz, R. and Brdiczka, D. (1982) Identification and characterization of the pore-forming protein in the outer membrane of rat liver mitochondria.Biochim. Biophys. Acta 686:204–214.

    Google Scholar 

  • Rosen, B. P. (1986) Recent advances in bacterial ion transport.Ann. Rev. Microbiol. 40:263–286.

    Google Scholar 

  • Rutherford, A. W. (1989) Photosystem II, the water-splitting enzyme.TIBS 14:227–232.

    Google Scholar 

  • Rydström, J., Persson, B. and Tan, H.-I. (1984) Mitochondrial nicotinamide nucleotide transhydrogenase. In:Bioenergetics (Ernster, L., ed.) Elsevier Science Publishers, Amsterdam, pp. 207–219.

    Google Scholar 

  • Sakai, Y., Moritani, C., Tsuda, M. and Tsuchiya, T. (1989) A respiratory-driven and an artificially driven ATP synthesis in mutants ofVibrio parahaemolyticus lacking H+-translocating ATPase.Biochim. Biophys. Acta 973:450–456.

    Google Scholar 

  • Sankaram, M. B., Brophy, P. J., Jordi, W. and Marsh, D. (1990) Fatty acid pH titration and the selectivity of interaction with extrinsic proteins in dimyristoylphosphatidylglycerol dispersions.Biochim. Biophys. Acta 1021:63–69.

    Google Scholar 

  • Sarafian, V. and Poole, R. J. (1989) Purification of an H+-translocating inorganic pyrophosphatase from vacuole membranes of red beet.Plant Physiol. 91:34–38.

    Google Scholar 

  • Schleyer, M. and Neupert, W. (1985) Transport of proteins into mitochondria: translocational intermediates spanning contact sites between outer and inner membranes.Cell 43:339–350.

    Google Scholar 

  • Schönfeld, P. (1990) Does the function, of adenine nucleotide translocase in fatty acid uncoupling depend on the type of mitochondria?FEBS Lett. 264:246–248.

    Google Scholar 

  • Schöknecht, G., Althoff, G., Apley, E., Wagner, R. and Junge, W. (1989) Cation channels by subunit III of the channel portion of the chloroplast H+-ATPase.FEBS Lett. 258:190–194.

    Google Scholar 

  • Schwartz, A. and Collins, J. H. (1982) Na+/K+-ATPase. Structure of the enzyme and mechanism of action of digitalis. InMembrane and transport (Martonosi, A. N., ed.), Plenum Press, New York, London,1, pp. 521–527.

    Google Scholar 

  • Semenov, A. Yu. (1991) Electrogenic reactions in the photosynthetic bacterial chromatophores. Thesis (Moscow) (Russ.).

  • Semeykina, A. L., Skulachev, V. P., Verkhovskaya, M. L. Bulygina, E. S. and Chumakov, K. M. (1989) The Na+-motive terminal oxidase activity in an alkalo- and halo-tolerantBacillus Eur.J. Biochem. 183:671–678.

    Google Scholar 

  • Senior, A. E. (1990) The proton-translocating ATPase ofEscherichia coli.Annu. Rev. Biophys. Chem. 19:7–41.

    Google Scholar 

  • Serrano, R. (1988) Structure and function of proton translocating ATPase in plasma membranes of plants and fungi.Biochim. Biophys. Acta 947:1–28.

    Google Scholar 

  • Shirvan, M. H., Schuldiner, S. and Rottem, S. (1989a) Na+ cycle inMycoplasma gallisepticum cell volume regulation.J. Bacteriol. 171:4410–4416.

    Google Scholar 

  • Shirvan, M. H., Schuldiner, S. and Rottem, S. (1989b) Na+ extrusion by a primary Na+ pump inMycoplasma gallisepticum.J. Bacteriol. 171:4417–4424.

    Google Scholar 

  • Skulachev, V. P. (1963) Regulation of the coupling of oxidation and phosphorylation.Proc. 5th Intern. Biochem. Congr. 5:365–374.

    Google Scholar 

  • Skulachev, V. P. (1969)Energy accumulation processes in the cell. Nauka, Moscow (Russ.).

    Google Scholar 

  • Skulachev, V. P. (1972)Energy transduction in biomembranes. Nauka Moscow (Russ.).

    Google Scholar 

  • Skulachev, V. P. (1975) Electric generators in coupling membranes: direct measurements of the electrogenic activity, molecular mechanism and some specific functions.Proc. 10th FEBS Meet.: 225–238.

  • Skulachev, V. P. (1977) Transmembrane electrochemical H+-potential as a convertible energy source for the living cell.FEBS Lett. 74:1–9.

    Google Scholar 

  • Skulachev, V. P. (1978) Membrane-linked energy buffering as the biological function of Na+/K+ gradient.FEBS Lett. 87:171–179.

    Google Scholar 

  • Skulachev, V. P. (1980) Membrane electricity as a convertible energy currency for the cell.Can. J. Biochem. 58:161–175.

    Google Scholar 

  • Skulachev, V. P. (1984a) Membrane bioenergetics. Should we build the bridge across the river or alongside of it?TIBS 9:182–185.

    Google Scholar 

  • Skulachev, V. P. (1984b) Sodium bioenergetics.TIBS 9:483–485.

    Google Scholar 

  • Skulachev, V. P. (1985) Membrane-linked energy transduction. Bioenergetic functions of sodium: H+ is not unique as a coupling ion.Eur. J. Biochem. 155:199–208.

    Google Scholar 

  • Skulachev, V. P. (1988)Membrane bioenergetics. Springer-Verlag Berlin.

    Google Scholar 

  • Skulachev, V. P. (1989a) Bacterial Na+ energetics.FEBS Lett. 250:106–114.

    Google Scholar 

  • Skulachev, V. P. (1989b) The sodium cycle: a novel type of bacterial energetics.J. Bioenerg. Biomembr. 21:637–647.

    Google Scholar 

  • Skulachev, V. P. (1990) Power transmission along biological membranes.J. Membr. Biol. 114:97–112.

    Google Scholar 

  • Skulachev, V. P. (1991) Fatty acid circuit as a physiological mechanism of uncoupling of oxidative phosphorylation.FEBS Lett. (accepted).

  • Skulachev, V. P. and Maslov, S. P. (1960) Role of non-phosphorylating oxidation in thermoregulation.Biokhimiya 25:1058–1064 (Russ.).

    Google Scholar 

  • Skulachev, V. P., Maslow, S. P., Sivkova, V. G., Kalinichenko, L. P. and Maslova, G. M. (1963) Cold-induced uncoupling of oxidation and phosphorylation in the muscle of white mice.Biokhimiya 28:70–79 (Russ.).

    Google Scholar 

  • Smith, R. E. and Horwitz, B. A. (1969) Brown fat and thermogenesis.Physiol. Rev. 49:330–425.

    Google Scholar 

  • Sone, N. (1990) Respiration-driven proton pumps.Bacteria 12:1–32.

    Google Scholar 

  • Swan, M. A. (1985) Electron microscopic observations of structures associated with the flagella ofSpirillus volutans.J. Bacteriol. 161:1137–1145.

    Google Scholar 

  • Takamiya, S., Furushima, F. and Oya, H. (1986) Electron-transfer complexes ofAscaris suum muscle mitochondria. II. Succinate-coenzyme Q reductase complex II associated with substrate-reducible cytochromeb-558.Biochim. Biophys. Acta 848:99–107.

    Google Scholar 

  • Tittor, J., Soell, C., Oesterhelt, D., Butt, H.-J. and Bamberg, E. (1990) A defective proton pump, point-mutated bacteriorhodopsin Asp-96→Asn is fully reactivated by azide.EMBO J. 8:3477–3482.

    Google Scholar 

  • Tokuda, H. (1984) Solubilization and reconstitution of the Na+-motive NADH oxidase activity from the marine bacteriumVibrio alginolyticus.FEBS Lett. 176:1125–1128.

    Google Scholar 

  • Tokuda, H. (1989) Respiratory Na+ pump and Na+-dependent energetics inVibrio alginolyticus.J. Bioenerg. Biomembr. 21:693–704.

    Google Scholar 

  • Tokuda, H., Asano, M., Shimamura, Y., Unemoto, T., Sugiyama, S. and Imae, Y. (1988) Roles of the respiratory Na+ pump in bioenergetics ofVibrio alginolyticus.J. Biochem. 103:650–655.

    Google Scholar 

  • Tokuda, H., Kim, Y. I. and Mizushima, S. (1990)In vitro protein translocation into inverted membrane vesicles prepared fromVibrio alginolyticus is stimulated by the electrochemical potential of Na+ in the presence ofEscherichia coli. Ser. A.FEBS Lett. 264:10–12.

    Google Scholar 

  • Tokuda, H. and Kogure, K. (1989) Generalized distribution and common properties of Na+-dependent NADH: quinone oxidoreductases in gram-negative marine bacteria.J. Gen. Microbiol. 135:703–709.

    Google Scholar 

  • Tokuda, H., Sugasawa, M. and Unemoto, T. (1982) Role of Na+ and K+ in α-aminosobutyric acid transport by the marine bacteriumVibrio alginolyticus.J. Biol. Chem. 257:788–794.

    Google Scholar 

  • Tokuda, H., Udagawa, T. and Unemoto, T. (1985) Generation of the electrochemical potential of Na+ by the Na+-motive oxidase in inverted membrane vesicles ofVibrio alginolyticus.FEBS Lett. 183:95–98.

    Google Scholar 

  • Tokuda, H. and Unemoto, T. (1981) A respiration-dependent primary sodium extrusion system functioning at alkaline pH in the marine bacteriumVibrio alginolyticus.Biochem. Biophys. Res. Communs. 102:265–271.

    Google Scholar 

  • Tokuda, H. and Unemoto, T. (1982) Characterization of the respiration-dependent Na+ pump in the marine bacteriumVibrio alginolyticus.J. Biol. Chem. 257:10007–10014.

    Google Scholar 

  • Tsuchiya, T. and Shinoda, S. (1985) Respiration-driven Na+ pump and Na+ circulation inVibrio parahaemolyticus.J. Bacteriol. 162:794–798.

    Google Scholar 

  • Udagawa, T., Unemoto, T. and Tokuda, H. (1986) Generation of Na+ electrochemical potential by the Na+-motive NADH oxidase and Na+/H+ antiport system of a moderately halophilicVibrio costicola.J. Biol. Chem. 261:2616–2622.

    Google Scholar 

  • Unden, G., Hackenberg, H. and Kröger, A. (1980) Isolation and functional aspects of the fumarate reductase involved in the phosphorylative electron transport ofVibrio succinogenes.Biochim. Biophys. Acta 591:275–278.

    Google Scholar 

  • Unemoto, T. and hayashi, M. (1989) Sodium-transport NADH-quinone reductase of a marineVibrio alginolyticus.J. Bioenerg. Biomembr. 21:649–662.

    Google Scholar 

  • Van Belzen, R., and Albracht, S. P. J. (1989) The pathway of electron transfer in NADH:Q oxidoreductase.Biochim. Biophys. Acta 974:311–320.

    Google Scholar 

  • Verkhovskaya, M. L., Semeykina, A. L. and Skulachev, V. P. (1988) Terminal oxidase operating as a primary Na+ pump.Dokl. AN SSSR 303:1501–1503 (Russ.).

    Google Scholar 

  • Wagner, G., Hartmann, R. and Oesterhelt, D. (1978) Potassium uniport andHalobacterium halobium.Eur. J. Biochem. 89:169–179.

    Google Scholar 

  • West, I. C. (1983)The biochemistry of membrane transport (Brammar, W. J. and Edidin, M. eds), Chapman and Hall, London, New York.

    Google Scholar 

  • West, I. C. (1990) What determines the substrate specificity of the multi-drug-resistance pump?TIBS 15:42–46.

    Google Scholar 

  • Wikström, M. (1977) Proton pump coupled to cytochromec oxidase in mitochondria.Nature 266:271–273.

    Google Scholar 

  • Wikström, M. and Babcock, G. T. (1990) Catalytic intermediates.Nature,348:16–17.

    Google Scholar 

  • Wikström, M., Krab, K. and Saraste, M. (1981)Cytochrome oxidase—a synthesis. Academic Press, London.

    Google Scholar 

  • Williams, R. J. P. (1961) Possible functions of chains of catalysts.J. Theoret. Biol. 1:1–13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skulachev, V.P. Chemiosmotic systems in bioenergetics: H+-cycles and Na+-cycles. Biosci Rep 11, 387–444 (1991). https://doi.org/10.1007/BF01130214

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01130214

Key Words

Navigation