Skip to main content
Log in

The osmochemistry of electron-transfer complexes

  • Symposium Papers
  • Published:
Bioscience Reports

Abstract

Detailed molecular mechanisms of electron transfer-driven translocation of ions and of the generation of electric fields across biological membranes are beginning to emerge. The ideas inherent in the early formulations of the chemiosmotic hypothesis have provided the framework for this understanding and have also been seminal in promoting many of the experimental approaches which have been successfully used. This article is an attempt to review present understanding of the structures and mechanisms of several osmoenzymes of central importance and to identify and define the underlying features which might be of general relevance to the study of chemiosmotic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, J. P., Feher, G., Yeates, T. O., Komiya, H. and Rees, D. C. (1987) Structure of the reaction center from Rhodobacter sphaeroides R-26: The cofactors.Proc. Natl. Acad. Sci. USA 84:5730–5734.

    Google Scholar 

  • Antonini, E., Brunori, M., Greenwood, C., Malmström, B. G. and Rotilio, G. C. (1971) The interaction of cyanide with cytochrome oxidase.Eur. J. Biochem. 23:396–400.

    Google Scholar 

  • Babcock, G. T., Callahan, P. M., Ondrias, M. R. and Salmeen, I. (1981) Coordination geometries and vibrational properties of cytochromesa anda 3 in cytochrome oxidase from Soret Excitation Raman spectroscopy.Biochemistry 20:959–966.

    Google Scholar 

  • Baker, G. M., Noguchi, M. and Palmer, G. (1987) The reaction of cytochrome oxidase with cyanide. Preparation of the rapidly reacting form and its conversion to the slowly reacting form.J. Biol. Chem. 262:595–604.

    Google Scholar 

  • Bickar, D., Lehninger, A., Brunori, M., Bonaventura, J. and Bonaventura, C. (1985) Functional equivalence of monomeric (shark) and dimeric (bovine) cytochrome c oxidase.J. Inorg. Biochem. 23:365–372.

    Google Scholar 

  • Blum, H., Harmon, H. J., Leigh, J. S., Salerno, J. C. and Chance, B. (1978) The orientation ofa heme of cytochrome oxidase in submitochondrial particles.Biochim. Biophys. Acta 502:1–10.

    Google Scholar 

  • Bourne, R. M. and Rich, P. R. (1991) The sodiummotive NADH-ubiquinone oxidoreductase ofVibrio alginolyticus.Biochem. Soc. Trans. 19:2515.

    Google Scholar 

  • Bowyer, J. R., Dutton, P. L., Prince, R. C. and Crofts, A. R. (1980) The role of the Rieske iron-sulfur center as the electron donor to ferricytochromec 2 inRhodopseudomonas sphaeroides.Biochim. Biophys. Acta 592:445–460.

    Google Scholar 

  • Capaldi, R. A. (1982) Arrangement of proteins in the mitochondrial inner membrane.Biochim. Biophys. Acta 694:291–306.

    Google Scholar 

  • Capaldi, R. A., Malatesta, F. and Darley-Usmar, V. M. (1983) Structure of cytochromec oxidase.Biochim. Biophys. Acta 726:135–148.

    Google Scholar 

  • Capaldi, R. A. (1990) Structure and function of cytochromec oxidase.Annu. Rev. Biochem. 59:569–596.

    Google Scholar 

  • Cevc, G. (1990) Membrane electrostatics.Biochim. Biophys. Acta 1031:311–382.

    Google Scholar 

  • Chan, S. I. and Li, P. M. (1990) Cytochrome c oxidase: understanding nature's design of a proton pump.Biochemistry 29:1–12.

    Google Scholar 

  • Chepuri, V., Lemieux, L., Au, D. C.-T. and Gennis, R. B. (1990a) The sequence of thecyo operon indicates substantial structural similarities between the cytochromeo ubiquinol oxidase ofEscherichia coli and theaa 3-type family of cytochromec oxidases.J. Biol. Chem. 265:11185–11192.

    Google Scholar 

  • Chepuri, V., Lemieux, L., Hill, J., Alben, J. O. and Gennis, R. B. (1990b) Recent studies of the cytochromeo terminal oxidase complex ofEscherichia coli.Biochim. Biophys. Acta Bio-Energetics 1018:124–127.

    Google Scholar 

  • Costello, M. J., Escaig, J., Matsushita, K., Viitanen, P. V., Menick, D. R. and Kaback, H. R. (1987) Purified lac permease and cytochrome o oxidase are functional as monomers.J. Biol. Chem. 262:17072–17082.

    Google Scholar 

  • Cramer, W. A., Black, M. T., Widger, W. R. and Girvin, M. E. (1987) Structure and function of photosynthetic b-c1 and b6-f complexes. In:The Light Reactions (Barber, J. Ed.) Elsevier Science Publishers B.V., Amsterdam. pp. 447–493.

    Google Scholar 

  • Crofts, A. R., Meinhardt, S. W., Jones, K. R. and Snozzi, M. (1983) The role of the quinone pool in the cyclic electron-transfer chain ofRhodopseudomonas sphaeroides. A modified Q-cycle mechanism.Biochim. Biophys. Acta 723:202–218.

    Google Scholar 

  • de Vries, S. (1986) The pathway of electron transfer in the dimeric QH2: cytochrome c oxidoreductase.J. Bioenerg. Biomemb. 18:195–224.

    Google Scholar 

  • Degli Esposti, M., Palmer, G. and Lenaz, G. (1989) Circular dichroic spectroscopy of membrane haemoproteins.Eur. J. Biochem. 182:27–36.

    Google Scholar 

  • Deisenhofer, J. and Michel, H. (1989) The photosynthetic reaction center from the purple bacteriumRhodopseudomonas viridis.Science 245:1463–1471.

    Google Scholar 

  • di Rago, J. P. and Colson, A-M. (1988) Molecular basis for resistance to antimycin and diuron. Q-cycle inhibitors acting at the Qi site in the mitochondrial ubiquinol-cytochrome c reductase inSaccharomyces cerevisiae.J. Biol. Chem. 263:12564–12570.

    Google Scholar 

  • di Rago, J-P., Coppee, J-Y. and Colson, A-M. (1989) Molecular basis for resistance to myxothiazol, mucidin (strobilurin A), and stigmatellin.J. Biol. Chem. 264:14543–14548.

    Google Scholar 

  • Dilley, R. A., Theg, S. M. and Beard, W. A. (1987) Membrane-proton interactions in chloroplast bioenergetics: localized proton domains.Annu. Rev. Plant Physiol. 38:347–389.

    Google Scholar 

  • Dimroth, P. (1987) Sodium ion transport decarboxylases and other aspects of sodium ion cycling in bacteria.Microbiol. Rev. 51: 320–340.

    Google Scholar 

  • Drachev, L. A., Kaurov, B. S., Mamedov, M. D., Mulkidjanian, A. Y., Semenov, A. Y., Shinkarev, V. P., Skulachev, V. P. and Verkhovsky, M. I. (1989) Flash-induced electrogenic events in the photosynthetic reaction center and bc1 complexes ofRhodobacter sphaeroides chromatophores.Biochim. Biophys. Acta 973: 189–197.

    Google Scholar 

  • Drachev, L. A., Mamedov, M. D., Mulkidjanian, A. Y., Semenov, A. Y., Shinkarev, V. P. and Verkhovsky, M. I. (1990) Electrogenesis associated with proton transfer in the reaction center protein of the purple bacteriumRhodobacter sphaeroides.FEBS Lett. 259: 324–326.

    Google Scholar 

  • Dracheva, S. M., Drachev, L. A., Konstantinov, A. A., Semenov, A. Y., Skulachev, V. P., Arutjunjan, A. M., Shuvalov, V. A. and Zaberezhnaya, S. M. (1988) Electrogenic steps in the redox reactions catalyzed by photosynethetic reaction-centre complex fromRhodopseudomonas viridis.Eur. J. Biochem. 171: 253–264.

    Google Scholar 

  • Dunn, M. F., Aguilar, V., Brzovic, P., Drewe, W. F., Jr., Houben, K. F., Leja, C. A. and Roy, M. (1990) The tryptophan synthase bienzyme complex transfers indole between the α-and β-sites via a 25–30 Å long tunnel.Biochemistry 29: 8598–8607.

    Google Scholar 

  • Erecinska, M., Blasie, J. K. and Wilson, D. F. (1977) Orientation of the hemes of cytochromec oxidase and cytochromec in mitochondria.FEBS Lett. 76: 235–239.

    Google Scholar 

  • Fabian, M., Thornström, P.-E., Brzezinski, P. and Malmström, B. G. (1987) Two-electron reduction is required for rapid internal electron transfer in resting, pulsed and oxygenated cytochromec oxidase.FEBS Lett. 213: 396–400.

    Google Scholar 

  • Feher, G., Allen, J. P., Okamura, M. Y. and Rees, D. C. (1989) Structure and function of bacterial photosynthetic reaction centres.Nature 339: 111–116.

    Google Scholar 

  • Gelles, J., Blair, D. F. and Chan, S. I. (1986) The proton-pumping site of cytochromec oxidase: a model of its structure and mechanism.Biochim. Biophys. Acta 853: 205–236.

    Google Scholar 

  • Giangiacomo, K. M. and Dutton, P. L. (1989) In photosynthetic reaction centers, the free energy difference for electron transfer between quinones bound at the primary and secondary quinone-binding sites governs the observed secondary site specificity.Proc. Natl. Acad. Sci. USA 86: 2658–2662.

    Google Scholar 

  • Glynn, I. M. and Karlish, S. J. D. (1990) Occluded cations in active transport.Annu. Rev. Biochem. 59: 171–205.

    Google Scholar 

  • Green, N. M. (1989) Ions, gates and channels.Nature 339: 424–425.

    Google Scholar 

  • Gunner, M. R. and Dutton, P. L. (1989) Temperature and-ΔGo dependence of the electron transfer from BPh to QA in reaction center protein fromRhodobacter sphaeroides with different quinones as QA.J. Am. Chem. Soc. 111: 3400–3412.

    Google Scholar 

  • Han, S., Ching Y. and Rousseau, D. L. (1990) Ferryl and hydroxy intermediates in the reaction of oxygen with reduced cytochromec oxidase.Nature 348: 89–90.

    Google Scholar 

  • Haraux, F. and de Kouchkovsky, Y. (1983) The energy-transduction theories: a microchemiosmotic approach in thylakoids.Physiologie Vègètale 21: 563–576.

    Google Scholar 

  • Hauska, G., Herold, E., Huber, C., Nitschke, W. and Sofrova, D. (1989) Stigmatellin affects both hemes of cytochrome b in cytochrome b6f/bc1-complexes.Z. Naturforsch. 44c: 462–467.

    Google Scholar 

  • Hayashi, M. and Unemoto, T. (1984) Characterization of the Na+-dependent respiratory chain NADH: quinone oxidoreductase of the marine bacterium,Vibrio alginolyticus, in relation to the primary Na+ pump.Biochim. Biophys. Acta 767: 470–478.

    Google Scholar 

  • Hayashi, M. and Unemoto, T. (1987) Subunit component and their roles in the sodium-transport NADH: quinone reductase of a marine bacterium,Vibrio alginolyticus.Biochim. Biophys. Acta 890: 47–54.

    Google Scholar 

  • Henderson, P. J. E. (1991) Studies of translocation catalysis.Biosci. Rep. 11: 447–538.

    Google Scholar 

  • Henderson, R., Baldwin, J. M., Ceska, T. A., Zemlin, F., Beckmann, E. and Downing, K. H. (1990) Model for the structure of bacteriorhodopsin based on high-resolution electron cryomicroscopy.J. Mol. Biol. 213: 899–929.

    Google Scholar 

  • Hill, R. (1985) The dynamic aspect of photosynthesis.Physiologie Vègètale 23: 545–554.

    Google Scholar 

  • Hinkle, P. and Mitchell, P. (1970) Effect of membrane potential on equilibrium poise between cytochromea and cytochromec in rat liver mitochondria.Bioenerg. 1: 45–60.

    Google Scholar 

  • Holm, L., Saraste, M. and Wikström, M. (1987) Structural models of the redox centres in cytochrome oxidase.EMBO J. 6: 2819–2823.

    Google Scholar 

  • Hope, A. B. and Rich, P. R. (1989) Proton Uptake by the Choroplast Cytochromebf Complex.Biochim. Biophys. Acta 975: 96–103.

    Google Scholar 

  • Hyde, C. C., Ahmed, S. A., Padlan, E. A., Miles, E. W. and Davies, D. R. (1988) Threedimensional structure of the tryptophan synthaseα 2 β 2 multienzyme complex fromSalmonella typhimurium.J. Biol. Chem. 263: 17857–17871.

    Google Scholar 

  • Jones, M. G., Bickar, D., Wilson, M. T., Brunori, M., Colosimo, A. and Sarti, P. (1984) A re-examination of the reactions of cyanide with cytochrome c oxidase.Biochem. J. 220: 57–66.

    Google Scholar 

  • Kell, D. B. (1979) On the functional proton current pathway of electron transport phosphorylation. An electrodic view.Biochim. Biophys. Acta 549: 55–99.

    Google Scholar 

  • Ken-dror, S., Lanyi, J. K., Schobert, B. and Avi-dor, Y. (1986) An NADH: quinone oxidoreductase of the halotolerant bacterium Ba1 is specifically dependent on sodium ions.Arch. Biochem. Biophys. 244: 766–772.

    Google Scholar 

  • Kostantinov, A. A. (1990) Vectorial electron and proton transfer steps in the cytochromebc 1 complex.Biochim. Biophys. Acta 1018: 138–141.

    Google Scholar 

  • Krab, K. and Wikström, M. (1987) Principles of coupling between electron transfer and proton translocation with special reference to proton-translocation mechanisms in cytochrome oxidase.Biochim. Biophys. Acta 895: 25–39.

    Google Scholar 

  • Larsen, R. W., Li, W., Copeland, R. A., Witt, S. N., Lou, B.-S., Chan, S. I. and Ondrias, M. R. (1990) Room temperature characterization of the dioxygen intermediates of cytochromec oxidase by resonance Raman spectroscopy.Biochemistry 29: 10135–10140.

    Google Scholar 

  • Linke, P., Bechmann, G., Gothe, A. and Weiss, H. (1986) Dimeric ubiquinol: cytochrome c reductase ofNeurospora mitochondria contains one cooperative ubiquinone-reduction centre.Eur. J. Biochem. 158: 615–621.

    Google Scholar 

  • Luvisetto, S. and Azzone, G. F. (1989) Local protons and uncoupling of aerobic and artificialΔμ H-driven ATP synthesis.Biochemistry 28: 1109–1116.

    Google Scholar 

  • Malmström, B. G. (1989) The mechanism of proton translocation in respiration and photosynthesis.FEBS Lett. 250: 9–21.

    Google Scholar 

  • Malmström, B. G. (1990a) Cytochromec oxidase as a redox-linked proton pump.Chemical Reviews 90: 1247–1260.

    Google Scholar 

  • Malmström, B. G. (1990b) Cytochrome oxidase: some unsolved problems and controversial issues.Arch. Biochem. Biophys. 280: 233–241.

    Google Scholar 

  • Maloy, S. R. (1990) Sodium-coupled cotransport. In:Bacterial Energetics (Krulwich, T. A. Ed.) Academic Press, Inc., San Diego. pp. 203–224.

    Google Scholar 

  • Martonosi, A. N., Jona, I., Molnar, E., Seidler, N. W., Buchet, R. and Varga, S. (1990) Emerging views on the structure and dynamics of the Ca2+-ATPase in sarcoplasmic reticulum.FEBS Lett. 268: 365–370.

    Google Scholar 

  • Mitchell, P. (1966)Chemiosmotic coupling in oxidative and photosynthetic phosphorylation, Glynn Research Ltd, Bodmin.

    Google Scholar 

  • Mitchell, P. (1968)Chemiosmotic coupling and energy transduction, Glynn Research Ltd, Bodmin.

    Google Scholar 

  • Mitchell, P. (1969) Chemiosmotic coupling and energy transduction.Theoretical and Experimental Biophysics 2: 159–216.

    Google Scholar 

  • Mitchell, P. (1972) Chemiosmotic coupling in energy transduction: a logical development of biochemical knowledge.Bioenerg. 3: 5–24.

    Google Scholar 

  • Mitchell, P. (1976a) Vectorial chemistry and the molecular mechanics of chemiosmotic coupling: power transmission by proticity.Biochem. Soc. Trans. 4: 399–430.

    Google Scholar 

  • Mitchell, P. (1976b) Possible molecular mechanisms of the protonmotive function of cytochrome systems.J. Theor. Biol. 62: 327–367.

    Google Scholar 

  • Mitchell, P., Mitchell, R., Moody, A. J., West, I. C., Baum, H. and Wrigglesworth, J. M. (1985) Chemiosmotic coupling in cytochrome oxidase: Possible protonmotive 0 loop and 0 cycle mechanisms.FEBS Lett. 188: 1–7.

    Google Scholar 

  • Mitchell, P. (1987a) A new redox loop formality involving metal-catalysed hydroxide-ion translocation. A hypothetical Cu loop mechanism for cytochrome oxidase.FEBS Lett. 222: 235–245.

    Google Scholar 

  • Mitchell, P. (1987b) Hypothesis. CuB loop mechanisms for cytochrome oxidase using a hydroxide or oxide e/H+ antiport gate.Glynn Biol. Research Reports 3: 1–7.

    Google Scholar 

  • Mitchell, P. (1991) Foundations of vectorial metabolism and osmochemistry.Biosci. Rep. 11: 297–346.

    Google Scholar 

  • Mitchell, R., Mitchell, P. and Rich, P. R. (1991) The assignment of the 655 nm spectral band of cytochrome oxidase.FEBS Lett. 280: 321–324.

    Google Scholar 

  • Mitchell, R., Brown, S., Mitchell, P. and Rich, P. R. (1992) Rates of cyanide binding to the catalytic intermediates of mammalian cytochromec oxidase and the effects of cytochromec and poly-L-lysine.Biochim. Biophys. Acta (in press.)

  • Moody, A. J. and Rich, P. R. (1988) Flash-induced chemical photoreduction of cytochromec and cytochrome c oxidase.EBEC Rep. 5: 69.

    Google Scholar 

  • Moody, A. J. and Rich, P. R. (1989) The functional catalytic unit involved in proton pumping by rat liver cytochromec reductase and by cytochromec oxidase.Biochim. Biophys. Acta 973: 29–34.

    Google Scholar 

  • Moody, A. J., Cooper, C. E. and Rich, P. R. (1991a) Characterisation of “fast” and “slow” forms of bovine heart cytochrome-c oxidase.Biochim. Biophys. Acta 1059: 189–207.

    Google Scholar 

  • Moody, A. J., Brandt, U. and Rich, P. R. (1991b) Single electron reduction of “slow” and “fast” cytochromec oxidase.FEBS Lett, (in press).

  • Murphy, M. P. (1989) Slip and leak in mitochondrial oxidative phosphorylation.Biochim. Biophys. Acta 977: 123–141.

    Google Scholar 

  • Nagle, J. F. and Tristram-Nagle, S. (1983) Hydrogen bonded chain mechanisms for proton conduction and proton pumping.J. Membrane Biol. 74: 1–14.

    Google Scholar 

  • Ohnishi, T., Schägger, H., Meinhardt, S. W., LoBrutto, R., Link, T. A. and von Jagow, G. (1989) Spatial organization of the redox active centers in the bovine heart ubiquinol-cytochromec oxidoreductase.J. Biol. Chem. 264: 735–744.

    Google Scholar 

  • Paddock, M. L., McPherson, P. H., Feher, G. and Okamura, M. Y. (1990) Pathway of proton transfer in bacterial reaction centers: Replacement of serine-L223 by alanine inhibits electron and proton transfers associated with reduction of quinone to dihydroquinone.Proc. Natl. Acad. Sci. USA 87: 6803–6807.

    Google Scholar 

  • Penttilä, T. (1983) Properties and reconstitution of a cytochrome oxidase deficient in subunit III.Eur. J. Biochem. 133: 355–361.

    Google Scholar 

  • Pietrobon, D., Zoratti, M., Azzone, G. F. and Caplan, S. R. (1986) Intrinsic uncoupling of mitochondrial proton pumps. 1. Modeling studies.Biochemistry 25: 767–775.

    Google Scholar 

  • Prochaska, L. J. and Fink, P. S. (1987) On the role of subunit III in proton translocation in cytochromec oxidase.J. Bioenerg. Biomemb. 19: 143–166.

    Google Scholar 

  • Puustinen, A., Finel, M., Virkki, M. and Wikström, M. (1989) Cytochromeo (bo) is a proton pump inParacoccus denitrificans andEscherichia coli. FEBS Lett. 249: 163–167.

    Google Scholar 

  • Rich, P. R. and Bendall, D. S. (1979) Hypothesis: a mechanism for the reduction of cytochromes by quinols in solution and its relevance to biological electron transfer reactions.FEBS Lett. 105: 189–194.

    Google Scholar 

  • Rich, P. R. (1981) A generalised model for the equilibration of quinone pools with their biological donors and acceptors in membrane-bound electron transfer chains.FEBS Lett. 130: 173–178.

    Google Scholar 

  • Rich, P. R., (1984) Electron and proton transfers through quinones and cytochrome bc complexes.Biochim. Biophys. Acta 768: 53–79.

    Google Scholar 

  • Rich, P. R. (1987) Structural and mechanistic aspects of the quinone binding sites of thebc complexes. In:Cytochrome Systems. Molecular Biology and Bioenergetics (Papa, S., Chance, B. and Ernster, L. Eds.) Plenum Press, New York, pp. 495–502.

    Google Scholar 

  • Rich, P. R. (1988a) A strategy for location of the site of proton pumping in cytochromec oxidase: Initial results.Annals of the New York Academy of Sciences 550: 254–259.

    Google Scholar 

  • Rich, P. R., West, I. C. and Mitchell, P. (1988b) The location of CuA in mammalian cytochromec oxidase.FEBS Lett. 233: 25–30.

    Google Scholar 

  • Rich, P. R. and Harper, R. (1990a) Partition coefficients of quinones and hydroquinones and their relation to biological reactivity and specificity.FEBS Lett. 269: 139–144.

    Google Scholar 

  • Rich, P. R., Jeal, A. E., Madgwick, S. A. and Moody, A. J. (1990b). The effects of inhibitors on the redox linked protonations of the haemsb of the mitochondrialbc 1 complex.Biochim. Biophys. Acta 1018: 29–40.

    Google Scholar 

  • Robertson, D. E. and Dutton, P. L. (1988) The nature and magnitude of the chargeseparation reactions of ubiquinol cytochromec 2 oxidoreductase.Biochim. Biophys. Acta 935: 273–291.

    Google Scholar 

  • Robertson, D. E., Daldal, F. and Dutton, P. L. (1990) Mutants of ubiquinol cytc 2 oxidoreductase resistant to Q0 site inhibitors: consequences for ubiquinone and ubiquinol affinity and catalysis.Biochemistry 29: 11249–11260.

    Google Scholar 

  • Rydström, J., Hoek, J. B. and Ernster, L. (1976) Nicotinamide nucleotide transhydrogenases.The Enzymes 13: 51–88.

    Google Scholar 

  • Saraste, M. (1984) Location of haem-binding sites in the mitochondrial cytochromeb.FEBS Lett. 166: 367–372.

    Google Scholar 

  • Saraste, M. (1990) Structural features of cytochrome oxidase.Q. Rev. Biophys. 23: 331–366.

    Google Scholar 

  • Saraste, M., Holm, L., Lemieux, L., Lübben, M. and van der Oost, J. (1991) The happy family of cytochrome oxidases.Biochem. Soc. Trans. 19: (in press).

  • Schägger, H., Link, T. A., Engel, W. D. and von Jagow, G. (1986) Isolation of the eleven protein subunits of thebc 1 complex from beef heart.Meth. Enzymol. 126: 224–237.

    Google Scholar 

  • Scherrer, R. A. (1984) The treatment of ionizable compounds in quantitative structure-activity studies with special consideration to ion partitioning. In:Pesticide Synthesis Through Rational Approaches.ACS Symposium Series 255 (Magee, P. S., Kohn, G. K. and Menn, J. J. Eds.). American Chemical Society, Washington D. C. pp. 225–246.

    Google Scholar 

  • Senior, A. E. (1990) The proton-translocating ATPase ofEscherichia coli.Annual Reviews of Biophysics and Biophysical Chemistry 19: 7–41.

    Google Scholar 

  • Skulachev, V. P. (1988)Membrane Bioenergetics, pp. 1–442, Springer-Verlag, Berlin.

    Google Scholar 

  • Staehelin, L. A. (1986) Chloroplast structure and supramolecular organization of photosynthetic membranes. In:Photosynthesis (Encyclopedia of plant physiology; new ser., v. 5–6, 19)III Photosynthetic membranes and light harvesting systems (Staehelin, L. A. and Arntzen, C. J. Eds.) Springer-Verlag, Berlin. pp. 1–72.

    Google Scholar 

  • Thornström, P.-E., Nilsson, T. and Malmström, B. G. (1988) The possible role of the closed-open transition in proton pumping by cytochromec oxidase: the pH dependence of cyanide inhibition.Biochim. Biophys. Acta 935: 103–108.

    Google Scholar 

  • Unemoto, T., Tokuda, H. and Hayashi, M. (1990) Primary sodium pumps and their significance in bacterial energetics. In:Bacterial Energetics (Krulwich, T. A. Ed.) Academic Press, Inc., San Diego. pp. 33–54.

    Google Scholar 

  • Valpuesta, J. M., Henderson, R. and Frey, T. G. (1990) Electron cryomicroscopic analysis of crystalline cytochrome oxidase.J. Mol. Biol. 214: 237–251.

    Google Scholar 

  • van Gelder, B. F. and Beinert, H. (1969) Studies of the haem of components of cytochromec oxidase by epr spectroscopy.Biochim. Biophys. Acta 189: 1–24.

    Google Scholar 

  • Varotsis, C. and Babcock, G. T. (1990) Appearance of the v(FeIV=0) vibration from a ferryl-oxo intermediate in the cytochrome oxidase/dioxygen reaction.Biochemistry 29: 7357–7362.

    Google Scholar 

  • Váró, G. and Lanyi, J. K. (1990a) Protonation and deprotonation of the M, N and O intermediates during the bacteriorhodopsin photocycle.Biochemistry 29: 6858–6865.

    Google Scholar 

  • Váró, G. and Lanyi, J. K. (1990b) Thermodynamics and mechanism in the bacteriorhodopsin photocycle.Biochemistry (in press).

  • von Jagow, G. and Link, T. A. (1986) Use of specific inhibitors on the mitochondrialbc 1 complex.Meth. Enzymol. 126: 253–271.

    Google Scholar 

  • Weiss, H., Hovmoller, S. and Leonard, K. (1986) Preparation of membrane crystals of ubiquinolcytochrome-c reductase fromNeurospora mitochondria and structure analysis by electron microscopy.Meth. Enzymol. 126: 191–201.

    Google Scholar 

  • Weiss, H., Friedrich, T., Hofhaus, G. and Preis, D. (1991) The respiratory chain NADH dehydrogenase (complex I) of mitochondria.Eur. J. Biochem. (in press).

  • Whitmarsh, J., Bowyer, J. R. and Crofts, A. R. (1982) Modification of the apparent redox reaction between cytochromef and the Rieske iron-sulfur protein.Biochim. Biophys. Acta 682: 404–412.

    Google Scholar 

  • Widger, W. R., Cramer, W. A., Herrmann, R. G. and Trebst, A. (1984) Sequence homology and structural similarity between cytochrome b of mitochondrial complex III and the chloroplast b6-f complex: position of the cytochromeb hemes in the membrane.Proc. Natl. Acad. Sci. USA 81: 674–678.

    Google Scholar 

  • Wikström, M. (1977) Proton pump coupled to cytochromec oxidase in mitochondria.Nature 266: 271–273.

    Google Scholar 

  • Wikström, M. (1989) Identification of the electron transfers in cytochrome oxidase that are coupled to proton-pumping.Nature 338: 776–778.

    Google Scholar 

  • Wikström, M. and Babcock, G. T. (1990) Cell respiration: Catalytic intermediates.Nature 348: 16–17.

    Google Scholar 

  • Wikström, M. K. F., Harmon, H. J., Ingledew, W. J. and Chance, B. (1976) A re-evaluation of the spectral potentiometric and energy-linked properties of cytochromec oxidase in mitochondria.FEBS Lett. 65: 259–277.

    Google Scholar 

  • Williams, R. J. P. (1961) Possible Functions of Chains of Catalysts.J. Theor. Biol. 1: 1–17.

    Google Scholar 

  • Williams, R. J. P. (1982) The nature of local chemical potentials. A comment on a letter by Professor V. P. Skulachev.FEBS Lett. 150: 1–3.

    Google Scholar 

  • Wilson, M. T., Greenwood, C., Brunori, M. and Antonini, E. (1975) Kinetic studies on the reaction between cytochromec oxidase and ferrocytochromec.Biochem. J. 147: 145–153.

    Google Scholar 

  • Witt, S. N., Blair, D. F. and Chan, S. I. (1986) Chemical and spectroscopic evidence for the formation of a ferryl Fea 3 intermediate during turnover of cytochromec oxidase.J. Biol. Chem. 261: 8104–8107.

    Google Scholar 

  • Witt, S. N. and Chan, S. I. (1987) Evidence for a ferryl Fea 3 in oxygenated cytochromec oxidase.J. Biol. Chem. 262: 1446–1448.

    Google Scholar 

  • Zweck, A., Bechmann, G. and Weiss, H. (1989) The pathway of the quinol/quinone transhydrogenation reaction in ubiquinol: cytochrome-c reductase ofNeurospora mitochondria,Eur. J. Biochem. 183: 199–203.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rich, P.R. The osmochemistry of electron-transfer complexes. Biosci Rep 11, 539–571 (1991). https://doi.org/10.1007/BF01130217

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01130217

Key Words

Navigation