Skip to main content
Log in

The reinforcement of potato cell wall as part of the phosphite-induced tolerance to UV-B radiation

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

Phosphites (Phis), inorganic salts of phosphorous acid, have shown to be effective in protection of plants against biotic stress. Recently, we have described that potassium phosphite (KPhi) induces tolerance to UV-B radiation in potato. To counteract the harmful effect of UV radiation, plants accumulate UV-screening compounds, such as flavonoids, sinapate ester, and lignin. In previous work, we have shown an increase in guaiacol peroxidase (POD) activity in plants pretreated with KPhi and further exposed to UV-B radiation. In order to continue with this study, the expression of different enzymes and components involved in cell wall reinforcement were analyzed. An isoform of POD induced by KPhi was analyzed by isoelectric focusing and further identified as suberization-associated anionic peroxidase (POPA) by mass spectrometry. In addition, other enzymes participating in lignin biosynthesis, like caffeoyl-CoA O-methyltransferase (CCoAOMT), determined by accumulation of transcripts, and laccase activity, visualized in zymogrames, were increased by KPhi treatment previous to UV-B exposure. Further, the accumulations of extensin (EXT) transcripts and of conjugated polyamines (PAs) were increased by KPhi treatment previous to UV-B exposure. All these results suggest cell wall reinforcement in leaves due to KPhi pretreatment followed by UV-B exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CCoAOMT:

caffeoyl-CoA O-methyltransferase

EXT:

extensin

HPLC-MSMS:

high-pressure liquid chromatography-mass spectrometry

IEF:

isoelectric focusing

KPhi:

potassium phosphite

PAs:

polyamines

Phi:

phosphite

POD:

guaiacol peroxidase

PR:

pathogen related

Put:

putrescine

ROS:

reactive oxygen species

Spd:

spermidine

Spm:

spermine

TLC:

thin layer chromatography

References

  • Almagro, L., Gómez Ros, L.V., Belchi-Navarro, S., Bru, R., Ros Barcelo, A., Pedreno M. A.: Class III peroxidases in plant defence reactions. — J. exp. Bot. 60: 377–390, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Araújo, M., Santos, C., Costa, M., Moutinho-Pereira, J., Correia, C., Dias, M.C.: Plasticity of young Moringa oleifera L. plants to face water deficit and UV-B radiation challenges. — J. Photochem. Photobiol. B. 162: 278–285, 2016.

    Article  PubMed  CAS  Google Scholar 

  • Bandurska, H., Cieslak, M.: The interactive effect of water deficit and UV-B radiation on salicylic acid accumulation in barley roots and leaves. — Environ. exp. Bot. 94: 9–18, 2013.

    Article  CAS  Google Scholar 

  • Bassard, J.E., Ullmann, P., Bernier, F., Werck-Reichhart, D.: Phenolamides: bridging polyamines to the phenolic metabolism. — Phytochemistry 71: 1808–1824, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Bernards, M.A., Fleming, W.D., Llewellyn, D.B., Priefer, R., Yang, X., Sabatino, A., Plourde, G.L.: Biochemical characterization of the suberization-associated anionic peroxidase of potato. — Plant Physiol. 1: 135–145, 1999.

    Article  Google Scholar 

  • Blokhina, O., Virolainen, E., Fagerstedt, K.V.: Antioxidants, oxidative damage and oxygen deprivation stress: a review. — Ann. Bot. 91: 179–194, 2003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bouchereau, A., Aziz, A., Larher, F., Martin-Tanguy, L.J.: Polyamines and environmental challenges: recent development. — Plant Sci. 140: 103–125, 1999.

    Article  CAS  Google Scholar 

  • Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Brosche, M., Strid, A.: Molecular events following perception of ultraviolet-B radiation by plants. — Physiol. Plant. 117: 1–10, 2003.

    Article  CAS  Google Scholar 

  • Cabane, M., Afif, D., Hawkins, S.: Lignins and abiotic stresses. — Adv. bot. Res. 61: 220–261, 2012.

    Google Scholar 

  • Choudhary, K.K., Agrawal S.B: Assessment of fatty acid profile and seed mineral nutrients of two soybean (Glycine max L.) cultivars under elevated ultraviolet-B: role of ROS, pigments and antioxidants. — Photochem. Photobiol. 92: 134–143, 2016.

    Article  PubMed  CAS  Google Scholar 

  • Cosio, C., Dunand, C.: Specific functions of individual class III peroxidase genes. — J. exp. Bot. 60: 391–408, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Eshraghi, L., Anderson, J., Aryamanesh, N., Shearer, B., McComb, J., Hardy, S.J.G.E., O’Brien, P.A.: Phosphite primed defence responses and enhanced expression of defence genes in Arabidopsis thaliana infected with Phytophthora cinnamomi. — Plant Pathol. 60: 1086–1095, 2011.

    Article  CAS  Google Scholar 

  • Espelie, K.E., Kolattukudy, P.E.: Purification and characterization of an abscisic acid-inducible anionic peroxidase associated with suberization in potato (Solanum tuberosum). — Arch. Biochem. Biophys. 240: 539–545, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Fawal, N., Li, Q., Savelli, B., Brette, M., Passaia, G., Fabre, M., Dunand, C.: PeroxiBase: a database for large-scale evolutionary analysis of peroxidases. — Nucl. Acids Res. 41: 441–444, 2013.

    Article  CAS  Google Scholar 

  • Flores, C., Vidal, C., Trejo-Hernández, M.R., Galindo, E., Serrano-Carreón, L.: Selection of Trichoderma strains capable of increasing laccase production by Pleurotuso streatus and Agaricus bisporus in dual cultures. — J. appl. Microbiol. 106: 249–257, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Flores, H.E., Galston, A.W.: Analysis of polyamines in higherplants by high performance liquid chromatography. — Plant Physiol. 69: 701–706, 1982.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gupta, K., Dey, A., Gupta, B.: Plant polyamines in abiotic stress responses. — Acta Physiol. Plant. 35: 2015–2036, 2013.

    Article  CAS  Google Scholar 

  • Hilal, M., Parrado, M.F., Rosa, M., Gallardo, M., Orce, L., Massa, E.M., Gonzalez, J.A., Prado F.E.: Epidermal lignin deposition in quinoa cotyledons in response to UV-B radiation. — Photochem. Photobiol. 79: 205–210, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Jansen, M.A.K., Van den Noort, R.E., Tan, M.Y., Prinsen, E.,L., Lagrimini, M., Thorneley, R.: Phenol-oxidizing peroxidases contribute to the protection of plants from ultraviolet radiation stress. — Plant Physiol. 126: 1012–1023, 2001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karmanov, A.P., Borisenkov, M.F., Kocheva, L.S.: Chemical structure and antioxidant properties of lignins from conifer, broadleaf, and herbaceous plants. — Chem. nat. Compounds 50: 702–705, 2014.

    Article  CAS  Google Scholar 

  • Koressaar, T., Remm, M.: Enhancements and modifications of primer design program Primer3. — Bioinformatics 23: 1289–1291, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Li, Y.S., Liu, X.B., Henson, J.F.: Advances in crop responses to enhanced UV-B radiation. — Appl. Ecol. Environ. Res. 14: 339–367, 2016.

    Article  Google Scholar 

  • Livak, K.J., Schmittgen, T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta CT) method. — Methods 25: 402–408, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Lobato, M.C., Machinandiarena, M.F., Tambascio, C., Dosio, G.A.A., Caldiz, D.O., Daleo, G.R., Andreu, A.B., Olivieri, F.P.: Effect of foliar applications of phosphite on post-harvest potato tubers. — Eur. J. Plant Pathol. 130: 155–163, 2011.

    Article  CAS  Google Scholar 

  • Lobato, M.C., Olivieri, F.P., González Altamiranda, E., Wolski, E., Daleo, G.R., Caldiz, D.O., Andreu, A.B.: Phosphite compounds reduce disease severity in potato seed tubers and foliage. — Eur. J. Plant Pathol. 122: 349–358, 2008.

    Article  CAS  Google Scholar 

  • Machinandiarena, M.F., Lobato, M.C., Feldman, M.L., Daleo, G.R., Andreu, A.B.: Potassium phosphite primes defense responses in potato against Phytophthora infestans. — J. Plant Physiol. 169: 1417–1424, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Mapelli, S., Brambilla, I.M., Radyukina, N.L., Ivanov, Y.V., Kartashov, A.V., Reggiani, R., Kuznetsov, V.V.: Free and bound polyamines changes in different plants as a consequence of UV-B light irradiation. — Gen. appl. Plant Physiol. 34: 55–66, 2008.

    CAS  Google Scholar 

  • Martin-Tanguy, J.: Metabolism and function of polyamines in plants: recent development (new approaches). — Plant Growth Regul. 34: 135–148, 2001.

    Article  CAS  Google Scholar 

  • Merkouropoulos, G., Shirsat, A.H.: The unusual Arabidopsis extensin gene AtExt1 is expressed throughout plant development and is induced by a variety of biotic and abiotic stresses. — Planta 217: 356–366, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Mohan, R., Bajar, A.M., Kolattukudy, P.E.: Induction of a tomato anionic peroxidase gene (tapl) by wounding in transgenic tobacco and activation of tapl/GUS and tap2/GUS chimeric gene fusions in transgenic tobacco by wounding and pathogen attack. — Plant mol. Biol. 21: 341–354, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Nicot, N., Hausman, J.F., Hoffmann, L., Evers, D.: Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. — J. exp. Bot. 56: 2907–2914, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Oyarburo, N.S., Machinandiarena, M.F., Feldman, L.M., Daleo, G.R., Andreu, A.B., Olivieri, F.P.: Potassium phosphite increases tolerance to UV-B in potato. — Plant Physiol. Biochem. 88: 1–8, 2015.

    Article  CAS  Google Scholar 

  • Passardi, F., Penel, C., Dunand, C.: Performing the paradoxical: how plant peroxidases modify the cell wall. — Trends Plant Sci. 9: 534–540, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Pilbeam, R.A., Howard, K., Shearer, B.L., Hardy, G.E.S.J.: Phosphite stimulated histological responses of Eucalyptus marginata to infection by Phytophthora cinnamomi. — Trees Struct. Funct. 25: 1121–1131, 2011.

    Article  CAS  Google Scholar 

  • Pontin, M.A., Piccoli, P.N., Francisco, R., Bottini, R., Martinez-Zapater, J.M., Lijavetzky, D.: Transcriptome changes in grapevine (Vitis vinifera L.) cv. Malbec leaves induced by ultraviolet-B radiation. — BMC Plant Biol. 10: 224, 2010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Price, N.J., Pinheiro, C., Soares, C.M, Ashford, D.A., Ricardo, C.P., Jackson, P.A.: A biochemical and molecular characterization of LEP1, an extensin peroxidase from lupin. — J. biol. Chem. 278: 41389–41399, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Ranocha, P., Chabannes, M., Chamayou, S., Danoun, S., Jauneau, A., Boudet, A.M., Goffner, D.: Laccase downregulation causes alterations in phenolic metabolism and cell wall structure in poplar. — Plant Physiol. 129: 145–155, 2002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rozema, J., Van de Staaij, J., Björn, L.O., Caldwell, M.: UV-B as an environmental factor in plant life: stress and regulation. — Trends Ecol. Evol. 12: 22–28, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, E., Kutchan, T., Kolattukudy, P.E.: Cloning and sequencing of cDNA for a highly anionic peroxidase from potato and the induction of its mRNA in suberizing potato tubers and tomato fruits. — Plant mol. Biol. 11: 15–26, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Sorokan, A.V, Kuluev, B.R., Burkhanova, G.F., Maksimov, I.V.: RNA silencing of the anionic peroxidase gene impairs potato plant resistance to Phytophthora infestans (Mont) de Bary. — Mol. Biol. 48: 709–717, 2014.

    Article  CAS  Google Scholar 

  • Sujkowska-Rybkowska, M., Borucki, W.: Accumulation and localization of extensin protein in apoplast of pea root nodule under aluminum stress. — Micron 67: 10–19, 2014.

    Article  PubMed  CAS  Google Scholar 

  • Sunkar, R.: MicroRNAs with macro-effects on plant stress responses. — Semin. cell. dev. Biol. 21: 805–811, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Todorova, D., Katerova, Z., Sergiev, I., Alexieva, V.: 11 polyamines - involvement in plant stress tolerance and adaptation. - In: Anjum, N.A., Gill, S.S., Gill, R. (ed.): Plant Adaptation to Environmental Change. Pp. 194–221. CAB International, Oxford 2014.

    Google Scholar 

  • Turlapati, P.V., Kim, K.W., Davin, L.B., Lewis N.G.: The laccase multigene family in Arabidopsis thaliana: towards addressing the mystery of their gene function(s). — Planta 233: 439–470, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Ulm, R., Nagy, F.: Signaling and gene regulation in response to ultraviolet light. — Curr. Opin. Plant Biol. 8: 477–482, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Untergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B.C., Remm, M., Rozen, S.G.: Primer3 - new capabilities and interfaces. — Nucl. Acids Res. 40: e115, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki, S., Noguchi, N., Mimaki, K.: Continuous UV-B irradiation induces morphological changes and the accumulation of polyphenolic compounds on the surface of cucumber cotyledons. — J. Radiat. Res. 48: 443–454, 2007.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. P. Olivieri.

Additional information

Acknowledgements: This work was supported by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, PIP 2011 N°0265) (CIC), and the Universidad Nacional de Mar del Plata (UNMdP).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machinandiarena, M.F., Oyarburo, N.S., Daleo, G.R. et al. The reinforcement of potato cell wall as part of the phosphite-induced tolerance to UV-B radiation. Biol Plant 62, 388–394 (2018). https://doi.org/10.1007/s10535-018-0780-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-018-0780-9

Additional key words

Navigation