Skip to main content

Advertisement

Log in

The laccase multigene family in Arabidopsis thaliana: towards addressing the mystery of their gene function(s)

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

While laccases, multi-copper glycoprotein oxidases, are often able to catalyze oxidation of a broad range of substrates, such as phenols and amines in vitro, their precise physiological/biochemical roles in higher plants remain largely unclear, e.g., Arabidopsis thaliana contains 17 laccases with only 1 having a known physiological function. To begin to explore their roles in planta, spatial and temporal expression patterns of Arabidopsis laccases were compared and contrasted in different tissues at various development stages using RT-PCR and promoter-GUS fusions. Various cell-specific expressions were noted where specific laccases were uniquely expressed, such as LAC4 in interfascicular fibers and seed coat columella, LAC7 in hydathodes and root hairs, LAC8 in pollen grains and phloem, and LAC15 in seed coat cell walls. Such specific cell-type expression patterns provide new leads and/or strategies into determining their precise physiological/biochemical roles. In addition, there was an apparent redundancy of gene expression patterns for several laccases across a wide variety of tissues, lignified and non-lignified, perhaps indicative of overlapping function(s). Preliminary evidence, based on bioinformatics analyses, suggests that most laccases may also be tightly regulated at both transcriptional (antisense transcripts, histone and DNA methylation) and posttranscriptional (microRNAs) levels of gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Abdel-Ghany SE, Pilon M (2008) MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. J Biol Chem 283:15932–15945

    Article  CAS  PubMed  Google Scholar 

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78

    Article  CAS  PubMed  Google Scholar 

  • Altamura MM, Possenti M, Matteucci A, Baima S, Ruberti I, Morelli G (2001) Development of the vascular system in the inflorescence stem of Arabidopsis. New Phytol 151:381–389

    Article  Google Scholar 

  • Baldrian P (2006) Fungal laccases—occurrence and properties. FEMS Microbiol Rev 30:215–242

    Article  CAS  PubMed  Google Scholar 

  • Bao W, O’Malley DM, Whetten R, Sederoff RR (1993) A laccase associated with lignification in loblolly pine xylem. Science 260:672–674

    Article  CAS  PubMed  Google Scholar 

  • Becnel J, Natarajan M, Kipp A, Braam J (2006) Developmental expression patterns of Arabidopsis XTH genes reported by transgenes and Genevestigator. Plant Mol Biol 61:451–467

    Article  CAS  PubMed  Google Scholar 

  • Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert GM, Galbraith DW, Benfey PN (2003) A gene expression map of the Arabidopsis root. Science 302:1956–1960

    Article  CAS  PubMed  Google Scholar 

  • Brady SM, Orlando DA, Lee J-Y, Wang JY, Koch J, Dinneny JR, Mace D, Ohler U, Benfey PN (2007) A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318:801–806

    Article  CAS  PubMed  Google Scholar 

  • Brown DM, Zeef LAH, Ellis J, Goodacre R, Turner SR (2005) Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell 17:2281–2295

    Article  CAS  PubMed  Google Scholar 

  • Bülow L, Schindler M, Choi C, Hehl R (2004) PathoPlant®: a database on plant-pathogen interactions. In Silico Biol 4:529–536

    PubMed  Google Scholar 

  • Burkhead JL, Gogolin Reynolds KA, Abdel-Ghany SE, Cohu CM, Pilon M (2009) Copper homeostasis. New Phytol 182:799–816

    Article  CAS  Google Scholar 

  • Caparrós-Ruiz D, Fornalé S, Civardi L, Puigdomènech P, Rigau J (2006) Isolation and characterization of a family of laccases in maize. Plant Sci 171:217–225

    Article  Google Scholar 

  • Cardon G, Höhmann S, Klein J, Nettesheim K, Saedler H, Huijser P (1999) Molecular characterisation of the Arabidopsis SBP-box genes. Gene 237:91–104

    Article  CAS  PubMed  Google Scholar 

  • Ceriotti A, Duranti M, Bollini R (1998) Effects of N-glycosylation on the folding and structure of plant proteins. J Exp Bot 49:1091–1103

    Article  CAS  Google Scholar 

  • Chan C-S, Guo L, Shih M-C (2001) Promoter analysis of the nuclear gene encoding the chloroplast glyceraldehyde-3-phosphate dehydrogenase B subunit of Arabidopsis thaliana. Plant Mol Biol 46:131–141

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Chen Z (2002) Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor. Plant Physiol 129:706–716

    Article  CAS  PubMed  Google Scholar 

  • Claus H (2003) Laccases and their occurrence in prokaryotes. Arch Microbiol 179:145–150

    CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Cooper SJ, Trinklein ND, Anton ED, Nguyen L, Myers RM (2006) Comprehensive analysis of transcriptional promoter structure and function in 1% of the human genome. Genome Res 16:1–10

    Article  CAS  PubMed  Google Scholar 

  • Davin LB, Wang H-B, Crowell AL, Bedgar DL, Martin DM, Sarkanen S, Lewis NG (1997) Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center. Science 275:362–366

    Article  CAS  PubMed  Google Scholar 

  • Dean JFD, Eriksson K-EL (1994) Laccase and the evolution of lignin in vascular plants. Holzforschung 48:S21–S33

    Article  Google Scholar 

  • Dean JFD, LaFayette PR, Rugh C, Tristram AH, Hoopes JT, Eriksson K-EL, Merkle SA (1998) Laccase associated with lignifying vascular tissues. In: Lewis NG, Sarkanen S (eds) Lignin and lignan biosynthesis, vol 697. American Chemical Society Symposium Series, Washington, DC, pp 96–108

    Chapter  Google Scholar 

  • Dharmawardhana DP, Ellis BE, Carlson JE (1992) Characterization of vascular lignification in Arabidopsis thaliana. Can J Bot 70:2238–2244

    Article  CAS  Google Scholar 

  • Dittmer NT, Suderman RJ, Jiang H, Zhu Y-C, Gorman MJ, Kramer KJ, Kanost MR (2004) Characterization of cDNAs encoding putative laccase-like multicopper oxidases and developmental expression in the tobacco hornworm, Manduca sexta, and the malaria mosquito, Anopheles gambiae. Insect Biochem Mol Biol 34:29–41

    Article  CAS  PubMed  Google Scholar 

  • Driouich A, Lainé A-C, Vian B, Faye L (1992) Characterization and localization of laccase forms in stem and cell cultures of sycamore. Plant J 2:13–24

    Article  CAS  Google Scholar 

  • Ducros V, Brzozowski AM, Wilson KS, Brown SH, Østergaard P, Schneider P, Yaver DS, Pedersen AH, Davies GJ (1998) Crystal structure of the type-2 Cu depleted laccase from Coprinus cinereus at 2.2 Å resolution. Nat Struct Biol 5:310–316

    Article  CAS  PubMed  Google Scholar 

  • Edlund AF, Swanson R, Preuss D (2004) Pollen and stigma structure and function: the role of diversity in pollination. Plant Cell 16:S84–S97

    Article  CAS  PubMed  Google Scholar 

  • Ehlting J, Mattheus N, Aeschliman DS, Li E, Hamberger B, Cullis IF, Zhuang J, Kaneda M, Mansfield SD, Samuels L, Ritland K, Ellis BE, Bohlmann J, Douglas CJ (2005) Global transcript profiling of primary stems from Arabidopsis thaliana identifies candidate genes for missing links in lignin biosynthesis and transcriptional regulators of fiber differentiation. Plant J 42:618–640

    Article  CAS  PubMed  Google Scholar 

  • Freudenberg K (1959) Biosynthesis and constitution of lignin. Nature 183:1152–1155

    Article  CAS  PubMed  Google Scholar 

  • Galuszka P, Frébortová J, Luhová L, Bilyeu KD, English JT, Frébort I (2005) Tissue localization of cytokinin dehydrogenase in maize: possible involvement of quinone species generated from plant phenolics by other enzymatic systems in the catalytic reaction. Plant Cell Physiol 46:716–728

    Article  CAS  PubMed  Google Scholar 

  • Gavnholt B, Larsen K, Rasmussen SK (2002) Isolation and characterization of laccase cDNAs from meristematic and stem tissues of ryegrass (Lolium perenne). Plant Sci 162:873–885

    Article  CAS  Google Scholar 

  • Graziani MT, Antonilli L, Sganga P, Citro G, Mondovi B, Rosei MA (1990) Biochemical and immunological studies of deglycosylated Rhus vernicifera laccase. Biochem Int 21:1113–1124

    CAS  PubMed  Google Scholar 

  • Hatton D, Sablowski R, Yung M-H, Smith C, Schuch W, Bevan M (1995) Two classes of cis sequences contribute to tissue-specific expression of a PAL2 promoter in transgenic tobacco. Plant J 7:859–876

    Article  CAS  PubMed  Google Scholar 

  • Haughn G, Chaudhury A (2005) Genetic analysis of seed coat development in Arabidopsis. Trends Plant Sci 10:472–477

    Article  CAS  PubMed  Google Scholar 

  • Heazlewood JL, Durek P, Hummel J, Selbig J, Weckwerth W, Walther D, Schulze WX (2008) PhosPhAt: a database of phosphorylation sites in Arabidopsis thaliana and a plant-specific phosphorylation site predictor. Nucleic Acids Res 36:D1015–D1021

    Article  CAS  PubMed  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300

    Article  CAS  PubMed  Google Scholar 

  • Higuchi T, Ito Y (1958) Dehydrogenation products of coniferyl alcohol formed by the action of mushroom phenol oxidase, Rhus-laccase, and radish peroxidase. J Biochem 45:575–579

    CAS  Google Scholar 

  • Höfgen R, Willmitzer L (1988) Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res 16:9877

    Article  PubMed  Google Scholar 

  • Hoopes JT, Dean JFD (2004) Ferroxidase activity in a laccase-like multicopper oxidase from Liriodendron tulipifera. Plant Physiol Biochem 42:27–33

    Article  CAS  PubMed  Google Scholar 

  • Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, Widmayer P, Gruissem W, Zimmermann P (2008) Genevestigator V3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinformatics Article ID420747. doi:10.1155/2008/420747

  • Hülskamp M (2004) Plant trichomes: a model for cell differentiation. Nat Rev Mol Cell Biol 5:471–480

    Article  PubMed  Google Scholar 

  • Hunter T (2000) Signaling—2000 and beyond. Cell 100:113–127

    Article  CAS  PubMed  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAS and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  CAS  PubMed  Google Scholar 

  • Kang JS, Frank J, Kang CH, Kajiura H, Vikram M, Ueda A, Kim S, Bahk JD, Triplett B, Fujiyama K, Lee SY, von Schaewen A, Koiwa H (2008) Salt tolerance of Arabidopsis thaliana requires maturation of N-glycosylated proteins in the Golgi apparatus. Proc Natl Acad Sci USA 105:5933–5938

    Article  CAS  PubMed  Google Scholar 

  • Kim K-W, Franceschi VR, Davin LB, Lewis NG (2006) β-Glucuronidase as reporter gene: advantages and limitations. In: Salinas J, Sanchez-Serrano JJ (eds) Methods in molecular biology: Arabidopsis protocols, vol 323, 2nd edn. Humana Press, Totowa, NJ, pp 263–273

  • Kim S-J, Kim K-W, Cho M-H, Franceschi VR, Davin LB, Lewis NG (2007) Expression of cinnamyl alcohol dehydrogenases and their putative homologues during Arabidopsis thaliana growth and development: lessons for database annotations? Phytochemistry 68:1957–1974

    Article  CAS  PubMed  Google Scholar 

  • LaFayette PR, Eriksson K-EL, Dean JFD (1995) Nucleotide sequence of a cDNA clone encoding an acidic laccase from sycamore maple (Acer pseudoplatanus L.). Plant Physiol 107:667–668

    Article  CAS  PubMed  Google Scholar 

  • LaFayette PR, Eriksson K-EL, Dean JFD (1999) Characterization and heterologous expression of laccase cDNAs from xylem tissues of yellow-poplar (Liriodendron tulipifera). Plant Mol Biol 40:23–35

    Article  CAS  PubMed  Google Scholar 

  • Lewis NG, Davin LB, Sarkanen S (1999) The nature and function of lignins. In: Barton Sir DHR, Nakanishi K, Meth-Cohn O (eds) Comprehensive natural products chemistry, vol 3. Elsevier, Oxford, UK, pp 617–745

  • Liu L, Dean JFD, Friedman WE, Eriksson K-EL (1994) A laccase-like phenoloxidase is correlated with lignin biosynthesis in Zinnia elegans stem tissues. Plant J 6:213–224

    Article  CAS  Google Scholar 

  • Lu C, Tej SS, Luo S, Haudenschild CD, Meyers BC, Green PJ (2005) Elucidation of the small RNA component of the transcriptome. Science 309:1567–1569

    Article  CAS  PubMed  Google Scholar 

  • Madzak C, Mimmi MC, Caminade E, Brault A, Baumberger S, Briozzo P, Mougin C, Jolivalt C (2006) Shifting the optimal pH of activity for a laccase from the fungus Trametes versicolor by structure-based mutagenesis. Protein Eng Des Sel 19:77–84

    Article  CAS  PubMed  Google Scholar 

  • Mattinen M-L, Kruus K, Buchert J, Nielsen JH, Andersen HJ, Steffensen CL (2005) Laccase-catalyzed polymerization of tyrosine-containing peptides. FEBS J 272:3640–3650

    Article  CAS  PubMed  Google Scholar 

  • Mayer AM, Staples RC (2002) Laccase: new functions for an old enzyme. Phytochemistry 60:551–565

    Article  CAS  PubMed  Google Scholar 

  • McCaig BC, Meagher RB, Dean JFD (2005) Gene structure and molecular analysis of the laccase-like multicopper oxidase (LMCO) gene family in Arabidopsis thaliana. Planta 221:619–636

    Article  CAS  PubMed  Google Scholar 

  • McDougall GJ (2000) A comparison of proteins from the developing xylem of compression and non-compression wood of branches of Sitka spruce (Picea sitchensis) reveals a differentially expressed laccase. J Exp Bot 51:1395–1401

    Article  CAS  PubMed  Google Scholar 

  • Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M (2005) The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. Plant Cell 17:2993–3006

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T (1958) Purification and physico-chemical properties of laccase. Biochim Biophys Acta 30:44–52

    Article  CAS  PubMed  Google Scholar 

  • Nakatsubo T, Mizutani M, Suzuki S, Hattori T, Umezawa T (2008) Characterization of Arabidopsis thaliana pinoresinol reductase, a new type of enzyme involved in lignan biosynthesis. J Biol Chem 283:15550–15557

    Article  CAS  PubMed  Google Scholar 

  • Niemetz R, Gross GG (2003) Oxidation of pentagalloylglucose to the ellagitannin, tellimagrandin II, by a phenol oxidase from Tellima grandiflora leaves. Phytochemistry 62:301–306

    Article  CAS  PubMed  Google Scholar 

  • Niemetz R, Schilling G, Gross GG (2003) Biosynthesis of the dimeric ellagitannin, cornusiin E, in Tellima grandiflora. Phytochemistry 64:109–114

    Article  CAS  PubMed  Google Scholar 

  • Nitta K, Kataoka K, Sakurai T (2002) Primary structure of a Japanese lacquer tree laccase as a prototype enzyme of multicopper oxidases. J Inorg Biochem 91:125–131

    Article  CAS  PubMed  Google Scholar 

  • O’Connor TR, Dyreson C, Wyrick JJ (2005) Athena: a resource for rapid visualization and systematic analysis of Arabidopsis promoter sequences. Bioinformatics 21:4411–4413

    Article  PubMed  Google Scholar 

  • Patten AM, Jourdes M, Cardenas CL, Laskar DD, Nakazawa Y, Chung BY, Franceschi VR, Davin LB, Lewis NG (2010) Probing native lignin macromolecular configuration in Arabidopsis thaliana in specific cell wall types: further insights into limited substrate degeneracy and assembly of the lignins of ref8, fah 1-2 and C4H:F5H lines. Mol Biosyst 6:499–515

    Article  CAS  PubMed  Google Scholar 

  • Persson S, Wei H, Milne J, Page GP, Somerville CR (2005) Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets. Proc Natl Acad Sci USA 102:8633–8638

    Article  CAS  PubMed  Google Scholar 

  • Pickel B, Constantin M-A, Pfannstiel J, Conrad J, Beifuss U, Schaller A (2010) An enantiocomplementary dirigent protein for the enantioselective laccase-catalyzed oxidative coupling of phenols. Angew Chem Int Ed Engl 49:202–204

    CAS  PubMed  Google Scholar 

  • Pilot G, Stransky H, Bushey DF, Pratelli R, Ludewig U, Wingate VPM, Frommer WB (2004) Overexpression of GLUTAMINE DUMPER1 leads to hypersecretion of glutamine from hydathodes of Arabidopsis leaves. Plant Cell 16:1827–1840

    Article  CAS  PubMed  Google Scholar 

  • Piontek K, Antorini M, Choinowski T (2002) Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-Å resolution containing a full complement of coppers. J Biol Chem 277:37663–37669

    Article  CAS  PubMed  Google Scholar 

  • Pourcel L, Routaboul J-M, Kerhoas L, Caboche M, Lepiniec L, Debeaujon I (2005) TRANSPARENT TESTA10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat. Plant Cell 17:2966–2980

    Article  CAS  PubMed  Google Scholar 

  • Raes J, Rohde A, Christensen JH, Van de Peer Y, Boerjan W (2003) Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiol 133:1051–1071

    Article  CAS  PubMed  Google Scholar 

  • Ranocha P, McDougall G, Hawkins S, Sterjiades R, Borderies G, Stewart D, Cabanes-Macheteau M, Boudet A-M, Goffner D (1999) Biochemical characterization, molecular cloning and expression of laccases—a divergent gene family—in poplar. Eur J Biochem 259:485–495

    Article  CAS  PubMed  Google Scholar 

  • Ranocha P, Chabannes M, Chamayou S, Danoun S, Jauneau A, Boudet A-M, Goffner D (2002) Laccase down-regulation causes alterations in phenolic metabolism and cell wall structure in poplar. Plant Physiol 129:145–155

    Article  CAS  PubMed  Google Scholar 

  • Reinhammar B (1970) Purification and properties of laccase and stellacyanin from Rhus vernicifera. Biochim Biophys Acta 205:35–47

    Article  CAS  PubMed  Google Scholar 

  • Reinhammar B, Malmstroem BG (1981) “Blue” copper-containing oxidases. In: Spiro TG (ed) Copper proteins, vol 3. Wiley, New York, NY, pp 109–149

    Google Scholar 

  • Richardson A, Duncan J, McDougall GJ (2000) Oxidase activity in lignifying xylem of a taxonomically diverse range of trees: identification of a conifer laccase. Tree Physiol 20:1039–1047

    CAS  PubMed  Google Scholar 

  • Saloheimo M, Niku-Paavola M-L, Knowles JKC (1991) Isolation and structural analysis of the laccase gene from the lignin-degrading fungus Phlebia radiata. J Gen Microbiol 137:1537–1544

    CAS  PubMed  Google Scholar 

  • Sato Y, Bao W, Sederoff R, Whetten R (2001) Molecular cloning and expression of eight laccase cDNAs in loblolly pine (Pinus taeda). J Plant Res 114:147–155

    Article  CAS  Google Scholar 

  • Shin R, Berg RH, Schachtman DP (2005) Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency. Plant Cell Physiol 46:1350–1357

    Article  CAS  PubMed  Google Scholar 

  • Sibout R, Eudes A, Mouille G, Pollet B, Lapierre C, Jouanin L, Séguin A (2005) CINNAMYL ALCOHOL DEHYDROGENASE-C and -D are the primary genes involved in lignin biosynthesis in the floral stem of Arabidopsis. Plant Cell 17:2059–2076

    Article  CAS  PubMed  Google Scholar 

  • Sieburth LE, Meyerowitz EM (1997) Molecular dissection of the AGAMOUS control region shows that cis elements for spatial regulation are located intragenically. Plant Cell 9:355–365

    Article  CAS  PubMed  Google Scholar 

  • Smyth DR, Bowman JL, Meyerowitz EM (1990) Early flower development in Arabidopsis. Plant Cell 2:755–767

    Article  CAS  PubMed  Google Scholar 

  • Solomon EI, Sundaram UM, Machonkin TE (1996) Multicopper oxidases and oxygenases. Chem Rev 96:2563–2605

    Article  CAS  PubMed  Google Scholar 

  • Sterjiades R, Dean JFD, Eriksson K-EL (1992) Laccase from sycamore maple (Acer pseudoplatanus) polymerizes monolignols. Plant Physiol 99:1162–1168

    Article  CAS  PubMed  Google Scholar 

  • Stewart CN Jr, Via LE (1993) A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechnology 14:748–750

    CAS  Google Scholar 

  • Takahama U (1995) Oxidation of hydroxycinnamic acid and hydroxycinnamyl alcohol derivatives by laccase and peroxidase. Interactions among p-hydroxyphenyl, guaiacyl and syringyl groups during the oxidation reactions. Physiol Plant 93:61–68

    Article  CAS  Google Scholar 

  • Taylor AB, Stoj CS, Ziegler L, Kosman DJ, Hart PJ (2005) The copper-iron connection in biology: structure of the metallo-oxidase Fet3p. Proc Natl Acad Sci USA 102:15459–15464

    Article  CAS  PubMed  Google Scholar 

  • Toufighi K, Brady SM, Austin R, Ly E, Provart NJ (2005) The Botany Array Resource: e-northerns, expression angling, and promoter analyses. Plant J 43:153–163

    Article  CAS  PubMed  Google Scholar 

  • Tsugeki R, Fedoroff NV (1999) Genetic ablation of root cap cells in Arabidopsis. Proc Natl Acad Sci USA 96:12941–12946

    Article  CAS  PubMed  Google Scholar 

  • Ulmasov T, Hagen G, Guilfoyle TJ (1999) Dimerization and DNA binding of auxin response factors. Plant J 19:309–319

    Article  CAS  PubMed  Google Scholar 

  • Vassão DG, Kim K-W, Davin LB, Lewis NG (2010) Lignans (neolignans) and allyl/propenyl phenols: biogenesis, structural biology, and biological/human health considerations. In: Townsend C, Ebizuka Y (eds) Comprehensive natural products chemistry II. Elsevier, Oxford, UK, vol 1: structural diversity I, pp 815–928

  • Wang G-D, Li Q-J, Luo B, Chen X-Y (2004) Ex planta phytoremediation of trichlorophenol and phenolic allelochemicals via an engineered secretory laccase. Nat Biotechnol 22:893–897

    Article  PubMed  Google Scholar 

  • Wang X-J, Gaasterland T, Chua N-H (2005) Genome-wide prediction and identification of cis-natural antisense transcripts in Arabidopsis thaliana. Genome Biol 6:R30. doi:10.1186/gb-2005-6-4-r30

    Article  PubMed  Google Scholar 

  • Western TL, Skinner DJ, Haughn GW (2000) Differentiation of mucilage secretory cells of the Arabidopsis seed coat. Plant Physiol 122:345–355

    Article  CAS  PubMed  Google Scholar 

  • Weymouth N, Dean JFD, Eriksson K-EL, Morrison WH III, Himmelsbach DS, Hartley RD (1993) Synthesis and spectroscopic characterization of p-hydroxyphenyl, guaiacyl and syringyl lignin polymer models (DHPs). Nordic Pulp & Paper Research Journal 8:344–349, 383

    Google Scholar 

  • Yoshida H (1883) Chemistry of lacquer (urushi). Part I. J Chem Soc 472–486

  • Zhang X, Clarenz O, Cokus S, Bernatavichute YV, Pellegrini M, Goodrich J, Jacobsen SE (2007) Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLoS Biol 5:e129. doi:10.1371/journal.pbio.0050129

    Article  PubMed  Google Scholar 

  • Zhou J, Lee C, Zhong R, Ye Z-H (2009) MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. Plant Cell 21:248–266

    Article  CAS  PubMed  Google Scholar 

  • Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet 39:61–69

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the National Science Foundation (MCB-0117260, Arabidopsis 2010), the United States Department of Energy (DE-FG-0397ER20259) and the G. Thomas and Anita Hargrove Center for Plant Genomic Research. The authors would also like to thank late Vincent R. Franceschi for his valuable advice and insights during this study and Julia Gothard-Szamosfalvi for growing/maintaining plants in the greenhouse facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norman G. Lewis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 27.5 kb)

Supplementary material 2 (DOC 74.5 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turlapati, P.V., Kim, KW., Davin, L.B. et al. The laccase multigene family in Arabidopsis thaliana: towards addressing the mystery of their gene function(s). Planta 233, 439–470 (2011). https://doi.org/10.1007/s00425-010-1298-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-010-1298-3

Keywords

Navigation