Skip to main content
Log in

Role of foliar application of 24-epibrassinolide in response of peanut seedlings to iron deficiency

  • Original papers
  • Published:
Biologia Plantarum

Abstract

Limited information is available on the role of brassinosteroids (BRs) in response of plants to nutrient deficiency. To understand the functions of BRs in response to iron deficiency, we investigated the effect of 24-epibrassinolide (EBR) on activities of ferric-chelate reductase (FCR), H+-ATPase, Ca2+-ATPase, nitrate reductase (NR), antioxidant enzymes, Fe and other minerals content and distribution, chlorophylls, soluble protein, free proline, reactive oxygen species, and malondialdehyde in peanut (Arachis hypogea L.) plants subjected to Fe deficiency (10−5 M Fe(III)-EDTA) with foliar application of EBR (0, 10−8, 5.0×10−8, 10−7, 5.0×10−7, and10−6 M). Results show that EBR increased Fe translocation from roots to shoots and increased Fe content in cell organelles. Activities of antioxidant enzymes increased and so the ability of resistance to oxidative stress was enhanced. As result of enhancement of H+-ATPase and Ca2+-ATPase activities, the inhibition of Fe, Ca, Mg, and Zn uptake and distribution was ameliorated. Chlorophyll, soluble protein, and free proline content also increased and consequently, chlorosis induced by Fe deficiency was alleviated. The results demonstrate that EBR had a positive role in regulating peanut growth and development under Fe deficiency and an optimal concentration appeared to be 10−7 M.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ALA:

aminolevulinic acid

BRs:

brassinosteroids

Car:

carotenoids

CAT:

catalase

Chl:

chlorophyll

CK1:

control

CK2:

low Fe treatment

EBR:

24-epibrassinolide

EBR1-5:

low Fe treatment combined with foliar application of various concentrations of EBR

FCR:

ferric-chelate reductase

MDA:

malondialdehyde

NR:

nitrate reductase

O2 •− :

superoxide anion

PM:

plasma membrane

POD:

peroxidase

ROS:

reactive oxygen species

SOD:

superoxide dismutase

References

  • Abadía, J., Morales, F., Abadía, A.: Photosystem II efficiency in low chlorophyll, iron-deficient leaves. — Plant Soil 215: 183–192, 1999.

    Article  Google Scholar 

  • Abadía, J., Vázquez, S., Rellán-Álvarez, R., El-Jendoubi, H., Alvarez-Fernández, A., López-Millán, A.F.: Towards a knowledge-based correction of iron chlorosis. — Plant Physiol. Biochem. 49: 471–482, 2011.

    Article  PubMed  Google Scholar 

  • Alcaraz, C.F., Martinez-Sánchez, F., Sevilla, F., Hellin, E.: Influence of ferredoxin levels on nitrate reductase activity in iron deficient lemon leaves. — J. Plant Nutr. 9: 1405–1413, 1986.

    Article  CAS  Google Scholar 

  • Alex, A.R., Martin, R.M., Jane, E.T., Alistair, M.H.: Calcium ions as intracellular second messengers in higher plants. — Adv. bot. Res. 22: 45–96, 1996.

    Article  Google Scholar 

  • Ali, B., Hasan, S.A., Hayat, S., Hayat, Q., Yadav, S., Fariduddin, Q., Ahmad, A.: A role of brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiata L.) Wilczek. — Environ. exp. Bot. 62: 153–159, 2008.

    Article  CAS  Google Scholar 

  • Ali, B., Hayat, S., Ahmad, A.: 28-Homobrassinolide ameliorates the salt stress in chickpea (Cicer arietinum L.). - Environ. exp. Bot. 59: 217–223, 2007.

    Article  CAS  Google Scholar 

  • Arora, P., Bhardwaj, R., Kanwar, M.K.: Effect of 24-epibrassinolide on growth, protein content and antioxidative defense system of Brassica juncea L. subjected to cobalt ion toxicity. — Acta Physiol. Plant. 34: 2007–2017, 2012.

    Article  CAS  Google Scholar 

  • Arora, N., Bhardwaj, R., Sharma, P., Arora, H.K.: Effect of 28-homobrassinolide on growth, lipid peroxidation and antioxidative enzyme activities in seedlings of Zea mays L. under salinity stress. — Acta Physiol. Plant. 30: 833–839, 2008.

    Article  CAS  Google Scholar 

  • Bacaicoa, E., Ángel, M.Z., Diane, L., Roberto, B.: Relationship between the hormonal balance and the regulation of iron deficiency stress responses in cucumber. — J. amer. Soc. hort. Sci. 134: 589–601, 2009.

    Google Scholar 

  • Bajguz, A.: Effect of brassinosteroids on nucleic acids and protein content in cultured cells of Chlorella vulgaris. — Plant Physiol. Biochem. 38: 209–215, 2000.

    Article  CAS  Google Scholar 

  • Bajguz, A., Tretyn, A.: The chemical characteristic and distribution of brassinosteroids in plants. — Phytochemistry 62: 1027–1046, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Bandurska, H.: Does proline accumulated in the leaves of water deficit stressed barley plants confine cell membrane injuries? II. Proline accumulation during hardening and its involvement in reducing membrane injuries in leaves subjected to severe osmotic stress. — Acta Physiol. Plant. 23: 483–490, 2001.

    Article  CAS  Google Scholar 

  • Bartwal, A., Mall, R., Lohani, P., Guru, S.K., Arora, S.: Role of secondary metabolites and brassinosteroids in plant defense against environmental stresses. — J. Plant Growth Regul. 32: 216–232, 2013.

    Article  CAS  Google Scholar 

  • Bates, L.S., Walden, R.T., Tearse, I.D.: Rapid determination of free proline for water stress studies. — Plant Soil 39: 205–207, 1973.

    Article  CAS  Google Scholar 

  • Bradford, M.M.: A rapid and sensitive for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.

    Article  CAS  PubMed  Google Scholar 

  • Briskin, D.P., Leonard, R.T., Hodges, T.K.: Isolation of the plasma membrane: markers and general principles. — Method. Enzymol. 148: 542–558, 1987.

    Article  CAS  Google Scholar 

  • Cakmak, I., Kirkby, E.: Role of magnesium in carbon partitioning and alleviating photoxidative damage. — Physiol. Plant. 133: 692–704, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Cerana, R., Bonetti, A., Marre, M.T., Romani, G., Lado, P.: Effects of a brassinosteroid on growth and electrogenic proton extrusion in Azuki bean epicotyls (Vigna angularis). — Physiol. Plant. 59: 23–27, 1983.

    Article  CAS  Google Scholar 

  • Chen, W.W., Yang, J.L., Qin, C., Jin, C.W., Mo, J.H., Ye, T., Zheng, S.J.: Nitric oxide acts downstream of auxin to trigger root ferric- chelate reductase activity in responses to iron deficiency in Arabidopsis. — Plant. Physiol. 154: 810–819, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curie, C., Briat, J.-F.: Iron transport and signaling in plants. — Annu. Rev. Plant Biol. 54: 183–206, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Fariduddin, Q., Khalil, R.R.A.E., Mir, B.A., Yusuf, M., Ahmad, A.: 24-Epibrassinolide regulates photosynthesis, antioxidant enzyme activities and proline content of Cucumis sativus under salt and/or copper stress. - Environ. Monitor. Assess. 185: 7845–7856, 2013.

    Article  CAS  Google Scholar 

  • Fariduddin, Q., Khanam, S., Hasan, S.A., Ali, B., Hayat, S.A., Ahmad, A.: Effect of 28-homobrassinolide on the drought stress-induced changes in photosynthesis and antioxidant system of Brassica juncea L. — Acta. Physiol. Plant. 31: 889–897, 2009.

    Article  CAS  Google Scholar 

  • Fariduddin, Q., Yusuf, M., Ahmad I., Ahmad, A.: Brassinosteroids and their role in response of plants to abiotic stresses. — Biol. Plant. 58: 9–17, 2014.

    Article  CAS  Google Scholar 

  • Frédéric, G., Duby, G., Stedingk, E.V., Zhao, R.M., Morsomme, P., Boutry, M.: Expression of a constitutively activated plasma membrane H+-ATPase alters plant development and increases salt tolerance. — Plant Physiol. 144: 173–177, 2007.

    Article  Google Scholar 

  • Gao, L., Shi, Y.X.: Genetic differences in resistance to iron deficiency chlorosis in peanut. — J Plant Nutr. 30: 37–52, 2007.

    Article  CAS  Google Scholar 

  • Gille, G., Sigler, K.: Oxidative stress in living cells. — Folia microbiol. 2: 131–152, 1995.

    Article  Google Scholar 

  • Gonzalo, M.J., Lucena, J.J., Hernández-Apaolaza, L.: Effect of silicon addition on soybean (Glycine max) and cucumber (Cucumis sativus) plants grown under iron deficiency. — Plant Physiol. Biochem. 70: 455–461, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Graziano, M., Beligni, M.V., Lamattina, L.: Nitric oxide improves internal iron availability in plants. — Plant Physiol. 130: 1852–1859, 2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graziano, M., Lamattina, L.: Nitric oxide and iron in plants: an emerging and converging story. — Trends Plant Sci. 10: 4–8, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Graziano, M., Lamattina, L.: Nitric oxide accumulation is required for molecular and physiological responses to iron deficiency in tomato roots. — Plant J. 52: 949–960, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Grotz, N., Guerinot, M.L.: Molecular aspects of Cu, Fe and Zn homeostasis in plants. — Biochim. biophys. Acta 1763: 595–608, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Hajlaoui, H., Denden, M., Ayeb, N.E.: Changes in fatty acids composition, hydrogen peroxide generation and lipid peroxidation of salt-stressed corn (Zea mays L.) roots. — Acta Physiol. Plant. 31: 787–796, 2009.

    Article  CAS  Google Scholar 

  • Hakan, C.A., Vahap, K.: Some parameters in relation to iron nutrition status of peach orchards. — J. Biol. environ. Sci. 1: 111–115, 2007.

    Google Scholar 

  • Hasan SA, Hayat S, Ali B, Ahmad A.: 28-Homobrassinolide protects chickpea (Cicer arietinum) from cadmium toxicity by stimulating antioxidant. - Environ. Pollut. 151: 60–66, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Hartzendorf, T., Rolletschek, H.: Effect of NaCl salinity on amino acid and carbohydrate contents of Phragmites australis. — Aquat. Bot. 69: 195–208, 2001.

    Article  CAS  Google Scholar 

  • Hayat, S., Hasan, S.A., Yusuf, M., Hayat, Q., Ahmad, A.: Effect of 28-homobrassinolide on photosynthesis, fluorescence and antioxidant system in the presence or absence of salinity and temperature in Vigna radiata. — Environ. exp. Bot. 69: 105–112, 2010.

    Article  CAS  Google Scholar 

  • Hayat, S., Yadav, S., Wani, A., Irfan, M., Ahmad, A.: Comparative effect of 28-homobrassinolide and 24-epibrassinolide on the growth, carbonic anhydrase activity and photosynthetic efficiency of Lycopersicum esculentum. — Photosynthetica 49: 397–404, 2011.

    Article  CAS  Google Scholar 

  • Heath, R.L., Packer, L.: Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. — Arch. Biochem. Biophys. 125: 189–198, 1968.

    Article  CAS  PubMed  Google Scholar 

  • Hell, R., Stephan, U.W.: Iron uptake, trafficking and homeostasis in plants. — Planta. 216: 541–551, 2003.

    CAS  PubMed  Google Scholar 

  • Hoagland, D.R., Arnon, D.I.: The water-culture method for growing plants without soil. — Calif. Agr. Exp. Sta. 347: 1–32, 1950.

    Google Scholar 

  • Ishimaru, Y., Suzuki, M., Tsukamoto, T., Suzuki, K., Nakazono, M., Kobayashi, T., Wada, Y., Watanabe, S., Matsuhashi, S., Takahashi, M., Nakanishi, H., Nishizawa, N.K.: Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+. — Plant J. 45: 335–346, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Iturbe-Ormaetxe, I., Moran, J. F., Arrese-Igor, C., Gogorcena, Y., Klucas, S. R. V., Becana, M.: Activated oxygen and antioxidant defences in iron-deficient pea plants. — Plant Cell Environ. 18: 421–129, 1995.

    Article  CAS  Google Scholar 

  • Jaleel, C.A., Riadh, K., Gopi, R., Manivannan, P., Inès, J., Al-Juburi, H.J., Zhao, C.X., Shao, H.B., Panneerselvam, R.: Antioxidant defence responses: physiological plasticity in higher plants under abiotic constraints. — Acta Physiol. Plant. 31: 427–436, 2009.

    Article  Google Scholar 

  • Jaworski, E.G.: Nitrate reductase assay in intact plant tissues. — Biochem. biophys. Res. Co. 43: 1274–1279, 1971.

    Article  CAS  Google Scholar 

  • Jin, C.W., He, X.Y., Wu, P., Zheng, S.J.: Mechanisms of microbially enhanced Fe acquisition in red clover (Trifolium pretense L.). — Plant Cell Environ. 29: 888–897, 2006.

    Article  PubMed  Google Scholar 

  • Jin, C.W., You, G.Y., He, Y.F., Tang, C.X., Wu, P., Zheng, S.J.: Iron deficiency-induced secretion of phenolics facilitates the reutilization of root apoplastic iron in red clover. — Plant Physiol. 144: 278–285, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kagale, S., Divi, U.K., Kronchko, J.E., Keller, W.A., Krishna, P.: Brassinosteroid conifers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. — Planta 225: 353–364, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Kanwar, M.K., Bhardwaj, R., Chowdhary, S.P., Arora, P., Sharma, P., Kumar, S.: Isolation and characterization of 24-epibrassinolide from Brassica juncea L. and its effects on growth, Ni ion uptake, antioxidant defense of Brassica plants and in vitro cytotoxicity. — Acta Physiol. Plant. 35: 1351–1362, 2013.

    Article  CAS  Google Scholar 

  • Khripach, V., Zhabinskii, V., Groot, A.: Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century. — Ann. Bot. 86: 441–447, 2000.

    Article  CAS  Google Scholar 

  • Kim, S.A., Punshon, T., Lanzirotti A., Li, L., Alonso, J.M., Ecker, J.R., Kaplan, J.: Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1. — Science 314: 1295–1298, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Knudson, L.L., Tibbitts, T.W., Edwards, G.E.: Measurement of ozone injury by determination of leaf chlorophyll concentration. — Plant Physiol. 60: 606–608, 1977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi, T., Yoshihara, T., Jiang, T., Goto, F., Nakanishi, H., Mori, S., Nishizawa, N.K.: Combined deficiency of iron and other divalent cations mitigates the symptoms of iron deficiency in tobacco plants. — Physiol. Plant. 119: 400–408, 2003.

    Article  CAS  Google Scholar 

  • Kong, J., Dong, Y.J., Xu, L.L., Liu, S., Bai, X.Y.: Effects of exogenous salicylic acid on alleviating chlorosis induced by iron deficiency in peanut seedlings (Arachis hypogaea L.). — J. Plant Growth Regul. 33: 715–729, 2014a.

    Article  CAS  Google Scholar 

  • Kong, J., Dong, Y.J., Xu, L.L., Liu, S., Bai, X.Y.: Effects of foliar application of salicylic acid and nitric oxide in alleviating iron deficiency induced chlorosis of Arachis hypogaea L. — Bot. Stud. 55: 9, 2014b.

    Article  Google Scholar 

  • Krishna, P.: Brassinoteroid-mediated stress responses. — J. Plant Growth Regul. 22: 289–297, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Larcher, W.: Physiological Plant Ecology - Ecophysiology and Stress Physiology of Functional Groups. 3rd Ed. - Springer, Tokyo 1995.

    Google Scholar 

  • Legay, S., Guignard, C., Ziebel, J., Evers, D.: Iron uptake and homeostasis related genes in potato cultivated in vitro under iron deficiency and overload. — Plant Physiol. Biochem. 60: 180–189, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Mori, S.: Iron acquisition by plants. — Curr. Opin. Plant Biol. 2: 250–253, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Marschner, H.: Mineral Nutrition of Higher Plants. - Academic Press, Cambridge 1995.

    Google Scholar 

  • Marschner, H., Römheld, V.: Strategies of plants for acquisition of iron. — Plant Soil 165: 261–274, 1994.

    Article  CAS  Google Scholar 

  • Matysik, J., Alia, A., Bhalu, B., Mohanty, P.: Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. — Curr. Sci. 82: 525–532, 2002.

    CAS  Google Scholar 

  • Mittler, R.: Oxidative stress, antioxidants and stress tolerance. — Trends Plant Sci. 7: 405–410, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Muller, M., Schmidt, W.: Environmentally induced plasticity of root hair development in Arabidopsis. — Plant Physiol. 134: 409–419, 2004.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nickel, K.S., Cunningham, B.A.: Improved peroxidase assay method using leuco-2,3,6-trichloroindophenol and application to comparative measurements of peroxidase catalysis. — Anal. Biochem. 27: 292–299, 1969.

    Article  CAS  PubMed  Google Scholar 

  • Ogweno, J.O., Song, X.S., Shi, K., Hu, W.H., Mao, W.H., Zhou, Y.H., Yu, J.Q., Nogués, S.: Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicum esculentum. — J. Plant Growth Regul. 27: 49–57, 2008.

    Article  CAS  Google Scholar 

  • Ohinishi, T., Gall, R.S., Mayer, M.L.: An improved assay of inorganic phosphate in the presence of extralabile phosphate compounds: application to the ATPase assay in the presence of phosphocreatine. — Anal. Biochem. 69: 261–267, 1975.

    Article  Google Scholar 

  • Palmgren, M.G.: Plant plasma membrane H+-ATPase: powerhouses for nutrient uptake. — Annu Rev Plant Biol. 52: 817–845, 2001.

    Article  CAS  Google Scholar 

  • Patra, H.L., Kar, M., Mishre, D.: Catalase activity in leaves and cotyledons during plant development and senescence. — Biochem. Pharmacol. 172: 385–390, 1978.

    CAS  Google Scholar 

  • Piñol, R., Simón, E.: Effect of 24-epibrassinolide on chlorophyll fluorescence and photosynthetic CO2 assimilation in Vicia faba plants treated with the photosynthesis-inhibiting herbicide Terbutryn. — J. Plant Growth Regul. 28: 97–105, 2009.

    Article  Google Scholar 

  • Pushnik, J.C., Miller, G.W.: Iron regulation of chloroplast photosynthetic function: mediation of PS I development. — J. Plant Nutr. 12: 407–421, 1989.

    Article  CAS  Google Scholar 

  • Rodríguez-Lucena, P., Hernández-Apaolaza, L., Lucena, J.J.: Comparison of iron chelates and complexes supplied as foliar sprays and in nutrient solution to correct iron chlorosis of soybean. — J. Plant Nutr. Soil Sci. 173: 120–126, 2010.

    Article  Google Scholar 

  • Sairam, R.K.: Effects of homobrassinolide application on plant metabolism and grain yield under irrigated and moisture stress conditions of two wheat varieties. — Plant Growth Regul. 14: 173–18, 1994.

    Article  CAS  Google Scholar 

  • Sasse, J.M.: Physiological actions of brassinosteroids: an update. — J. Plant Growth Regul. 22: 276–288, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt, W.: Mechanisms and regulation of reduction-based iron uptake in plants. — New Phytol. 141: 1–26, 1999.

    Article  CAS  Google Scholar 

  • Shenker, M., Chen, Y.: Increasing iron availability to crops: fertilizers, organo-fertilizers, and biological approaches. — Soil Sci Plant Nutr. 51: 1–17, 2005.

    Article  CAS  Google Scholar 

  • Sevilla, F., Del Rio, L.A., Hellin, E.: Superoxide dismutases from a citrus plant: presence of two iron-containing isoenzymes in leaves of lemon trees (Citrus limonum L.). — J. Plant Physiol. 116: 381–387, 1984.

    Article  CAS  PubMed  Google Scholar 

  • Shi, G.R., Cai, Q.S., Liu, Q.Q., Wu, L.: Salicylic acid-mediated alleviation of cadmium toxicity in hemp plants in relation to cadmium uptake, photosynthesis, and antioxidant enzymes. — Acta Physiol. Plant. 31: 969–977, 2009.

    Article  CAS  Google Scholar 

  • Shi, Q.H., Zhu, Z.J.: Effects of exogenous salicylic acid on manganese toxicity, element contents and antioxidative system in cucumber. — Environ. exp. Bot. 63: 317–326, 2008.

    Article  CAS  Google Scholar 

  • Simaei, M., Khavarinejad, R.A., Saadatmand, S., Bernard, F., Fahimi, H.: Interactive effects of salicylic acid and nitric oxide on soybean plants under NaCl salinity. — Russ. J. Plant Physiol. 58: 783–790, 2011.

    Article  CAS  Google Scholar 

  • Sirhindi, G., Kumar, S., Bhardwaj, R., Kumar, M.: Effects of 24-epibrassinolide and 28-homobrassinolide on the growth and antioxidant enzyme activities in the seedlings of Brassica juncea L. — Physiol. mol. Biol. Plants 15: 335–341, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart, R.C., Bewley, J.D.: Lipid peroxidation associated with accelerated aging of soybean axes. — Plant Physiol. 65: 245–248, 1980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su, Y., Liu, J.L., Lu, Z.W., Wang, X.M., Zhang, Z., Shi, G.G.: Effects of iron deficiency on subcellular distribution and chemical forms of cadmium in peanut roots in relation to its translocation. — Environ. exp. Bot. 97: 40–48, 2014.

    Article  CAS  Google Scholar 

  • Takker, P.N., Kaur. N.P.: HCl method for Fe2+ estimation to resolve iron chlorosis in plants. — J. Plant Nutr. 7: 81–90, 1984.

    Article  Google Scholar 

  • Tewari, R.K., Kumar, P., Neetu, Sharma, P.N.: Signs of oxidative stress in the chlorotic leaves of iron starved plants. — Plant Sci. 169: 1037–1045, 2005.

    Article  CAS  Google Scholar 

  • Thomine, S., Lelièvre, F., Debarbieux, E., Schroeder, J.I., Barbier-Brygoo, H.: AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency. — Plant J. 34: 685–695, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Vert, G., Grotz, N., Dedaldechamp, F., Gaymard, F., Guerinot, M.L., Briat, J.F., Curie, C.: IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. — Plant Cell 14: 1223–1233, 2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, B., Li, Y.S., Zhang, W.H.: Brassinosteroids are involved in response of cucumber (Cucumis sativus) to iron deficiency. — Ann. Bot. 110: 681–688, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilen, R.W., Sacco, M., Gusta, L.V., Krishna, P.: Effects of 24-epibrassinolide on freezing and thermotolerance of bomegrass (Bromus inermis) cell cultures. — Physiol. Plant. 95: 195–202, 1995.

    Article  CAS  Google Scholar 

  • Zhang, X.W., Dong, Y.J., Qiu, X.K., Hu, G.Q., Wang, Y.H., Wang, Q.H.: Exogenous nitric oxide alleviates irondeficiency chlorosis in peanut growing on calcareous soil. — Plant Soil Environ. 58: 111–120, 2012.

    CAS  Google Scholar 

  • Zhao, Y,J,, Chen, J,: Studies on physiological action and application of 24-epibrassinolide in agriculture. - In: Hayat S, Ahmad A (ed.): Brassinosteroids: Bioactivity and Crops Productivity. Pp. 159–170. Kluwer Academic Publishers, Dordrecht 2003.

    Chapter  Google Scholar 

  • Zuo, Y.M., Zhang, F.S.: Soil and crop management strategies to prevent iron deficiency in crops. — Plant Soil. 339: 83–95, 2011.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. J. Dong.

Additional information

Acknowledgments: The authors thank Pingping Yang (the College of Animal Science and Technology, the Shandong Agricultural University, China) for her supplying instruments and patient guidance. This research was financially supported by the Shandong Provincial Natural Science Foundation of China (ZR2013CM003) and the Shandong Province Higher Educational Science and Technology Program (J14LF08).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y.L., Dong, Y.J., Tian, X.Y. et al. Role of foliar application of 24-epibrassinolide in response of peanut seedlings to iron deficiency. Biol Plant 60, 329–342 (2016). https://doi.org/10.1007/s10535-016-0596-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-016-0596-4

Additional key words

Navigation