Skip to main content
Log in

Morphological and histological changes during the somatic embryogenesis of mangosteen

  • Brief Communication
  • Published:
Biologia Plantarum

Abstract

Induction of somatic embryogenesis in leaf explants from young mangosteen seedlings using different concentrations and combinations of 6-benzylaminopurine (BAP) and thidiazuron (TDZ) was investigated. The best medium inducing the formation of globular structures (40 %) was Murashige and Skoog medium with 0.7 mg dm−3 BAP and 0.7 mg dm−3 TDZ. For their further development, subculturing onto different maturation media was carried out, but these globular structures did not develop futher stages of somatic embryogenesis. However, they developed shoots after 90 d of culture on the original medium. Morphological and histological analyses were performed, and showed that the globular structures resembled closely the undifferentiated structure of the mangosteen seed. We propose that the development of mangosteen somatic embryos does not follow the typical course of somatic embryogenesis, but the course of development that is natural for mangosteen seed, where procambium is the only structure observed and there is no differentiated embryo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

ABA:

abscisic acid

BAP:

6-benzylaminopurine

IBA:

indole-3-butyric acid

IAA:

indole-3-acetic acid

FAA:

formalin + acetic acid + alcohol

MS:

Murashige and Skoog

PEG:

polyethylene glycol

SEM:

scanning electron microscope

TDZ:

thidiazuron

WPM:

Woody plant medium

References

  • Almeyda, N., Martin, F.W.: Cultivation of neglected tropical fruits with promise 1. The mangosteen (Garcinia mangostana L.). — US Agr. Res. Service South Region 155: 1–18, 1976.

    Google Scholar 

  • Blazquez, S., Olmos, E., Hernandez, J.E., Fernandez-Garcia, N., Fernandez, J.A., Piqueras, A.: Somatic embryogenesis in saffron (Crocus sativus L.). Histological differentiation and implication of some components of the antioxidant enzymes system. — Plant Cell Tissue Organ Cult. 97: 49–57, 2009.

    Article  CAS  Google Scholar 

  • Corbineau, F., Come, D.: Experiments on the storage of seeds and seedlings of Symphonia globulifera L.f. (Guttiferae). — Seed Sci. Technol. 14: 585–591, 1986.

    Google Scholar 

  • Do Nascimento, W.M.O., De Carvalho, J.E.U., Muller, C.H.: Morphological characterization of seeds and seedlings to Rheedia acuminata. — Rev. Bras. Frutic. 24: 555–558, 2002.

    Article  Google Scholar 

  • Dudits, D., Gyorgyey, L., Bako, L.: Molecular biology of somatic embryogenesis. — In: Thorpe, T.A. (ed.): In Vitro Embryogenesis in Plants. Pp. 267–308. Kluwer Academic Publishers, Dordrecht — Boston — London 1995.

    Chapter  Google Scholar 

  • Evans, D.E. (ed.): Plant Cell Culture. — Brookes University, Oxford 2003.

    Google Scholar 

  • Feher, A.: The initiation phase of somatic embryogenesis: what we know and what we don’t. — Acta biol. Szeged 52: 53–56, 2008.

    Google Scholar 

  • Gairi, A., Rahid, A.: TDZ-induced somatic embryogenesis in non-responsive caryopses of rice using a short treatment with 2.4-D. — Plant Cell Tissue Organ Cult. 76: 29–34, 2003.

    Article  Google Scholar 

  • Giridhar, P., Indu, E.P., Ravishankar, G.A., Chandrasekar, A.: Influence of TRIA on somatic embryogenesis in Coffea arabica L. and Coffea canephora P. ex FR. — In Vitro cell. dev. Biol. Plant 40: 200–203, 2004.

    Article  Google Scholar 

  • Goh, H.K.L., Rao, A.N., Loh, C.S.: In vitro plantlet formation in mangosteen (Garcinia mangostana L.). — Ann. Bot. 62: 87–93, 1988.

    Google Scholar 

  • Ha, C.O., Sands, V.E., Soupadmo, E., Jong, K.: Reproductive patterns of selected understorey trees in the Malaysian rainforest: the apomictic species. — Bot. J. Linn. Soc. 97: 317–331, 1988.

    Article  Google Scholar 

  • Horn, C.L.: Existence of only one variety of cultivated mangosteen explained by asexually formed ’seed’. — Science 92: 237–238, 1940.

    Article  PubMed  CAS  Google Scholar 

  • Hussain, S.S., Rao, A.Q., Husnain, T., Riazuddin, S.: Cotton somatic embryo morphology affects its conversion to plant. — Biol. Plant. 53: 307–311, 2009.

    Article  CAS  Google Scholar 

  • Jalil, M., Chee, W.W., Othman, R.Y., Khalid, N.: Morphological examination on somatic embryogenesis of Musa acuminate cv. Mas (AA). — Sci. Hort. 117: 335–340, 2008.

    Article  CAS  Google Scholar 

  • Kiran Ghanti, S., Sujata, K.G., Srinath Rao, M., Kavi Kishor, P.B.: Direct somatic embryogenesis and plant regeneration from immature explants of chickpea. — Biol. Plant. 54: 121–125, 2010.

    Article  CAS  Google Scholar 

  • Lim, A.L.: The embryology of Garcinia mangostana L. (Clusiaceae). — Garden Bull. Singapore 37: 93–103, 1984.

    Google Scholar 

  • Litz, R.E.: Somatic embryogenesis from cultured leaf explants of the tropical tree Euphoria longan Stend. — J. Plant Physiol. 132: 459–466, 1988.

    Google Scholar 

  • Llyod, G.B., Mc Cown, B.H.: Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. — Proc. Int. Plant Propag. Soc. 30: 421–427, 1980.

    Google Scholar 

  • Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassay with tobacco tissue culture. — Physiol. Plant. 15: 473–497, 1962.

    Article  CAS  Google Scholar 

  • Murthy, B.N.S., Murch, S.J., Saxena, P.K.: Thidiazuron induced somatic embryogenesis in intact seedlings of peanut (Arachis hypogaea): endogenous growth regulator levels and significance of cotyledons. — Physiol. Plant. 94: 268–276, 1995.

    Article  CAS  Google Scholar 

  • Nagata, T., Ishida, S., Hasezawa, S., Takahashi, Y.: Genes involved in the dedifferentiation of plant cells. — Int. J. dev. Biol. 38: 321–327, 1994.

    PubMed  CAS  Google Scholar 

  • Normah, M.N., Nor-Azza, A.B., Aliudin, R.: Factors affecting in vitro shoot proliferation and ex vitro establishment of mangosteen. — Plant Cell Tissue Organ Cult. 43: 291–294, 1995.

    Google Scholar 

  • Normah, M.N., Rosnah, H., Nor-Azza, A.B.: Multiple shoots and callus formation from seeds of mangosteen (Garcinia mangostana L.) cultured in vitro. — Acta Hort. 292: 87–91, 1992.

    Google Scholar 

  • Richard, A.J.: Studies in Garcinia, dioecious tropical forest tree: the origin of mangosteen (G. mangostana L.). — Bot. J. Linn. Soc. 103: 301–308, 1990.

    Article  Google Scholar 

  • Shekhawat, G.S., Mathur, S., Batra, A.: Role of phytohormones and nitrogen in somatic embryogenesis induction in cell culture derived from leaflets of Azadirachta indicia. — Biol. Plant. 53: 707–710, 2009.

    Article  CAS  Google Scholar 

  • Sprecher, M.A.: Etude sur la semance et la germination du Garcinia mangostana L. — Rev. Gen. Bot. 31: 513–531, 1919.

    Google Scholar 

  • Su, W.W., Hwang, W., Kim, S.Y., Sagawa, Y.: Induction of somatic embryogenesis in Azadirachta indica. — Plant Cell Tissue Organ Cult. 50: 91–95, 1997.

    Article  Google Scholar 

  • Te-Chato, S., Lim, M.: Plant regeneration of mangosteen via nodular callus formation. — Plant Cell Tissue Organ Cult. 59: 89–93, 1999.

    Article  CAS  Google Scholar 

  • Te-Chato, S., Lim, M.: Improvement of mangosteen micropropagation through meristematic nodular callus formation from in vitro-derived leaf explants. — Scientia Hort. 86: 291–298, 2000.

    Article  CAS  Google Scholar 

  • Te-Chato, S., Lim, M., Suranilpong, P.: Embryogenic callus induction in mangosteen (Garcinia mangostana L.). — Songklanakarin J. Sci. Technol. 1: 115–120, 1995.

    Google Scholar 

  • Thorpe, T.A., Stasolla, C.: Somatic embryogenesis. — In: Bhojwani, S.S., Soh, W.J. (ed.): Current Trends in the Embryology of Angiosperms. Pp. 279–336. Kluwer Academics Publishers, Dordrecht 2001.

    Google Scholar 

  • Vestal, P.A.: The significance of comparative anatomy in establishing the relationship of the Hypericaceae to the Guttiferae and their allies. — Philippine J. Sci. 64: 199–256, 1937.

    Google Scholar 

  • Vila, S., Gonzalez, A., Rey, H., Mroginski, L.: Somatic embryogenesis and plant regeneration in Cedrela fissilis. — Biol. Plant. 53: 383–386, 2009.

    Article  CAS  Google Scholar 

  • Visser, C., Qureshi, J.A., Gill, R., Saxena, P.K.: Morphoregulatory role of thidiazuron. — Plant Physiol. 99: 1704–1797, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Von Arnold, S., Sabala, I., Bozhkov, P., Dyachock, J., Filonova, L.: Developmental pathways of somatic embryogenesis. — Plant Cell Tissue Organ Cult. 69: 233–240, 2002.

    Article  Google Scholar 

  • West, M.A.L., Harada, J.J.: Embryogenesis in higher plants: an overview. — Plant Cell 5: 1361–1369, 1993.

    Article  PubMed  Google Scholar 

  • Zimmerman, J.L.: Somatic embryogenesis: a model for early development in higher plants. — Plant Cell 5: 1411–1423, 1993.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the Malaysian Ministry of Science, Technology and Innovation for funding this project (Grant No. 05-01-02-SF0340). We thank Alena Sanusi for her editorial comments on the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Normah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elviana, M., Rohani, E.R., Ismanizan, I. et al. Morphological and histological changes during the somatic embryogenesis of mangosteen. Biol Plant 55, 731–736 (2011). https://doi.org/10.1007/s10535-011-0177-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-011-0177-5

Additional key words

Navigation