Skip to main content
Log in

Expression profiles of PtrLOS2 encoding an enolase required for cold-responsive gene transcription from trifoliate orange

  • Published:
Biologia Plantarum

Abstract

Low expression of osmotically responsive genes 2 (LOS2) encodes an enolase (2-phospho-D-glycerate hydrolase, EC 4.2.1.11) that converts 2-phospho-D-glycerate (PGA) to phosphoenolpyruvate (PEP) in the glycolytic pathway in Arabidopsis. Meanwhile, it is a transcriptional activator of cold-responsive gene, negatively controlling the expression of STZ/ZAT10, a zinc finger transcriptional repressor of cold-responsive gene from Arabidopsis. A novel LOS2 gene, designated PtrLOS2 (GenBank accession number GQ144341), was isolated from trifoliate orange [Poncirus trifoliata (L.) Raf.]. The PtrLOS2 cDNA is 1 662 bp in length with a 1 338 bp open reading frame (ORF), encoding a deduced 445 amino acid residue protein with a predicted molecular mass of 47.79 kDa and an isoelectric point of 5.54. The deduced protein of the PtrLOS2 gene shares high identity (over 86 %) with other plant species enolase, which suggests that the PtrLOS2 probably encodes an enolase. Sequence alignment showed that PtrLOS2 protein has a conserved DNA-binding and a repression domain. Moreover, a conserved start site of alternative translation for the c-myc promoter binding protein (MBP-1) was also found in PtrLOS2 protein. PtrLOS2 was constitutively expressed in leaves, stems and roots. PtrLOS2 expression in roots and stems was much higher than that in leaves under normal conditions, however, the expression of PtrLOS2 was up-regulated in leaves, but down-regulated in roots after cold treatments. The PtrLOS2 expression in stems was firstly up-regulated and then down-regulated after cold treatments. Meanwhile, after ABA treatment, the expression of PtrLOS2 was up-regulated in leaves but in stems and roots firstly down-regulated followed with up-regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CBF/DREB:

C-repeat binding factor/dehydration-responsive element-binding factor

COR:

cold regulated

LTI:

low-temperature induced

LOS2:

low expression of osmotically responsive gene 2

MBP-1:

c-myc promoter binding protein

MYB:

myeloblastosis

MYC:

myelocytomatosis

ORF:

open reading frame

PEP:

phosphoenolpyruvate

PGA:

2-phospho-D-glycerate

RACE:

rapid amplification of cDNA ends

RD:

responsive-to-desiccation

RT:

reverse transcript

STZ/ZAT10:

salt-tolerance zinc finger ZAT10

References

  • Chinnusamy, V., Zhu, J., Zhu, J.K.: Gene regulation during cold acclimation in plants. — Physiol. Plant. 126: 52–61, 2006.

    Article  CAS  Google Scholar 

  • Feo, S., Arcuri, D., Piddini, E., Passantino, R., Giallongo, A.: ENO1 gene product binds to the c-myc promoter and acts as a transcriptional repressor: relationship with Myc promoter-binding protein 1 (MBP-1). — FEBS Lett. 473: 47–52, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein, R., Gampala, S., Rock, C.: Abscisic acid signaling in seeds and seedlings. — Plant Cell 14(Suppl.): S15–S45, 2002.

    CAS  PubMed  Google Scholar 

  • Giallongo, A., Feo, S., Moore, R., Croce, C.M., Showe, L.C.: Molecular cloning and nucleotide sequence of a full-length cDNA for human enolase. — Proc. nat. Acad. Sci. USA 83: 6741–6745, 1986.

    Article  CAS  PubMed  Google Scholar 

  • Gilmour, S.J., Fowler, S.G., Thomashow, M.F.: Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities. — Plant mol. Biol. 54: 767–781, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Gusta, L.V., Trischuk, R., Weiser, C.J.: Plant cold acclimation: the role of abscisic acid. — J. Plant Growth Regul. 24: 308–318, 2005.

    Article  CAS  Google Scholar 

  • Guy, C.L.: Cold acclimation and freezing stress tolerance: role of protein metabolism. — Annu. Rev. Plant Physiol. Plant mol. Biol. 41: 187–223, 1990.

    CAS  Google Scholar 

  • Hajela, R.K., Horvath, D.P., Gilmour, S.J., Thomashow, M.F.: Molecular cloning and expression of cor (cold-regulated) genes in Arabidopsis thaliana. — Plant Physiol. 93: 1246–1252, 1990.

    Article  CAS  PubMed  Google Scholar 

  • Jaglo, K.R., Kleff, S., Amundsen, K.L., Zhang, X., Haake, V., Zhang, J.Z., Deits, T., Thomashow, M.F.: Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. — Plant Physiol. 127: 910–917, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Kaplan, F., Kopka, J., Haskell, D.W., Zhao, W., Schiller, K.C., Gatzke N., Sung, D.Y., Guy, C.L.: Exploring the temperature-stress metabolome of Arabidopsis. — Plant Physiol. 136: 4159–4168, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Kurkela, S., Borg-Franck, M.: Structure and expression of kin2, one of two cold- and ABA-induced genes of Arabidopsis thaliana. — Plant mol. Biol. 19, 689–692: 1992.

    Article  CAS  PubMed  Google Scholar 

  • Lee, H., Guo, Y., Ohta, M., Xiong, L., Stevenson, B., Zhu, J.K.: LOS2, a genetic locus required for cold-responsive gene transcription encodes a bifunctional enolase. — EMBO J. 21: 2692–2702, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Lee, T.M., Lur, H.S., Chu, C.: Role of abscisic acid in chilling tolerance of rice (Oryza sativa L.) seedlings: II. Modulation of free polyamine levels. — Plant Sci. 126: 1–10, 1997.

    Article  CAS  Google Scholar 

  • Leung, J., Giraudat, J.: Abscisic acid signal transduction. — Annu. Rev. Plant Physiol. Plant mol. Biol. 49: 199–222, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K., Shinozaki, K.: Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low- temperature-responsive gene expression, respectively, in Arabidopsis. — Plant Cell 10: 1391–1406, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Maruyama, K., Sakuma, Y., Kasuga, M., Ito, Y., Seki, M., Goda, H., Shimada, Y., Yoshida, S., Shinozaki, K., Yamaguchi-Shinozaki, K.: Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. — Plant J. 38: 982–993, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Monroy, A.F., Dhindsa, R.S.: Low-temperature signal transduction: induction of cold acclimation-specific genes of alfalfa by calcium at 25 degrees C. — Plant Cell 7: 321–331, 1995.

    Article  CAS  PubMed  Google Scholar 

  • Nordin, K., Vahala, T., Palva, E.T.: Differential expression of two related, low-temperature-induced genes in Arabidopsis thaliana (L.) Heynh. — Plant mol. Biol. 21: 641–653, 1993.

    Article  CAS  PubMed  Google Scholar 

  • Ray, R., Miller, D.M.: Cloning and characterization of a human c-myc promoter-binding protein. — Mol. cell. Biol. 11: 2154–2161, 1991.

    CAS  PubMed  Google Scholar 

  • Reddy, V.S., Reddy, A.S.: Proteomics of calcium signaling components in plants. — Phytochemistry 65: 1745–1776, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, P., Sharma, N., Deswal, R.: The molecular biology of the low-temperature response in plants. — BioEssays 27: 1048–1059, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki, K., Yamaguchi-Shinozaki, K.: Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. — Curr. Opin. Plant Biol. 3: 217–223, 2000.

    CAS  PubMed  Google Scholar 

  • Stockinger, E.J., Gilmour, S.J., Thomashow, M.F.: Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. — Proc. nat. Acad. Sci. USA 94: 1035–1040, 1997.

    Article  CAS  PubMed  Google Scholar 

  • Subramanian, A., Miller, D.M.: Structural analysis of α-enolase. Mapping the functional domains involved in downregulation of the c-myc protooncogene. — J. biol. Chem. 275: 5958–5965, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Tavano, E.C.R., Stipp, L.C.L., Muniz, F.R., Mourao Filho, F.A.A., Mendes, B.M.J.: In vitro organogenesis of Citrus volkameriana and Citrus aurantium. — Biol. Plant. 53: 395–399, 2009.

    Article  Google Scholar 

  • Thomashow, M.F.: Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. — Annu. Rev. Plant Physiol. Plant mol. Biol. 50: 571–599, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Thomashow, M.F.: So what’s new in the field of plant cold acclimation? Lots! — Plant Physiol. 125: 89–93, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Van der Straeten, D., Rodrigues-Pousada, R.A., Goodman, H.M., Van Montagu, M.: Plant enolase: gene structure expression, and evolution. — Plant Cell 3: 719–735, 1991.

    Article  PubMed  Google Scholar 

  • Viswanathan, C., Zhu, J.K.: Molecular genetic analysis of cold-regulated gene transcription. — Phil. Trans. roy. Soc. London B 357: 877–886, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., Li, W., Li, M., Welti, R.: Profiling lipid changes in plant response to low temperatures. — Physiol. Plant. 126: 90–96, 2006.

    Article  CAS  Google Scholar 

  • Xiong, L., Schumaker, K.S., Zhu, J.K.: Cell signaling during cold, drought, and salt stress. — Plant Cell 14: S165–S183, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki, K., Shinozaki, K.: A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. — Plant Cell 6: 251–264, 1994.

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki, K., Shinozaki, K.: Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. — Annu. Rev. Plant Biol. 57: 781–803, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Yelenosky, G., Hearn, C.J., Cooper, W.C.: Relative growth of trifoliate orange selections. — Proc. Florida State hort. Soc. 93: 205–209, 1968.

    Google Scholar 

  • Yuen, C.Y.L., Leelapon, O., Chanvivattana, Y., Warakanont, J., Narangajavana, J.: Molecular characterization of two genes encoding plastidic ATP/ADP transport proteins in cassava. — Biol. Plant. 53: 37–44, 2009.

    Article  CAS  Google Scholar 

  • Zhang, X., Fowler, S.G., Cheng, H., Lou, Y., Rhee, S.Y., Stockinger, E.J., Thomashow, M.F.: Freezing sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis. — Plant J. 39: 905–919, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, J., Dong, C.H., Zhu, J.K.: Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation. — Curr. Opin. Plant Biol. 10: 290–295, 2007.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was funded by the National Natural Science Foundation of China (Number 30571289).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. H. Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, D.C., He, L.G., Wang, H.L. et al. Expression profiles of PtrLOS2 encoding an enolase required for cold-responsive gene transcription from trifoliate orange. Biol Plant 55, 35–42 (2011). https://doi.org/10.1007/s10535-011-0005-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-011-0005-y

Additional key words

Navigation