Skip to main content
Log in

Responses of Camellia sinensis cultivars to Cu and Al stress

  • Brief Communication
  • Published:
Biologia Plantarum

Abstract

The response of Camellia sinensis (L.) O. Kuntze cultivars Chinary and Assamica to Cu and Al stresses was investigated. Exposure to 100 µM CuSO4 or 100 µM AlCl3 led to accumulation of reactive oxygen species (ROS) more in Assamica than in Chinary. Proline content was higher in Chinary compared to Assamica, while chlorophyll and protein contents decreased upon Cu and Al exposure in both the cultivars. Expression of glutathione biosynthetic enzymes γ-glutamylcysteinyl synthetase (γ-ECS) and glutathione synthetase (GSHS) was elevated. Phytochelatin synthase (PCS), an enzyme involved in phytochelatins synthesis by using glutathione as a substrate was up-regulated at its transcript level more in Chinary than in Assamica. These results suggest that Chinary could be more tolerant than Assamica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

γ-ECS:

γ-glutamylcysteinyl synthetase

GSH:

glutathione

GSHS:

glutathione synthetase

PCs:

phytochelatins

PCS:

phytochelatin synthase

ROS:

reactive oxygen species

References

  • Ahsan, N., Lee, D.G., Lee, S.H., Kang, K.Y., Lee, J.J., Kim, P.J., Yoon, H.S., Kim, J.S., Lee, B.H.: Excess copper induced physiological and proteomic changes in germinating rice seeds. — Chemosphere 67: 1182–1193, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Alia, Saradhi, P.P., Mohanty, P.: Involvement of proline in protecting thylakoid membranes against free radicalinduced photodamage. — J. Photochem. Photobiol. B 38: 253–257, 1997.

    Article  CAS  Google Scholar 

  • Bálint, A.F., Röder, M.S., Hell, R., Galiba, G., Börner, A.: Mapping of QTLs affecting copper tolerance and the Cu, Fe, Mn and Zn contents in the shoots of wheat seedlings. — Biol. Plant. 51: 129–134, 2007.

    Article  Google Scholar 

  • Basak, M., Sharma, M., Chakraborty, U.: Biochemical response of Camellia sinensis (L.) O. Kuntze to heavy metal stress. — J. environ. Biol. 22: 37–41, 2001.

    CAS  PubMed  Google Scholar 

  • Bates, L.S., Waldren, R.P., Teare, I.D.: Rapid determination of free proline for water-stress studies. — Plant Soil 39: 205–207, 1973.

    Article  CAS  Google Scholar 

  • Blum, R., Beck, A., Korte, A., Stengel, A., Letzel, T., Lendzian, K., Grill, E.: Function of phytochelatin synthase in catabolism of glutathione-conjugates. — Plant J. 49: 740–749, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Bradford, M.N.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.

    Article  CAS  PubMed  Google Scholar 

  • Cuypers, A., Koistinen, K.M., Kokko, H., Kärenlampi, S., Auriola, S., Vangronsveld, J.: Analysis of bean (Phaseolus vulgaris L.) proteins affected by copper stress. — J. Plant Physiol. 162: 383–392, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Delhaize, E., Hebb, D.M., Richards, K.D., Lin, J.M., Ryan, P.R., Gardner, R.C.: Cloning expression of a wheat (Triticum aestivum L.) phosphatidylserine synthase cDNA: overexpression in plants alter the composition of phospholipids. — J. biol. Chem. 274: 7082–7088, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Gallego, F.J., Benito, C.: Genetic control of aluminum tolerance in rye (Secale cereale L.). — Theor. appl. Genet. 95: 393–399, 1997.

    Article  CAS  Google Scholar 

  • Goodwin, S.B., Sutter, T.R.: Microarray analysis of Arabidopsis genome response to aluminum stress. — Biol. Plant. 53: 85–99, 2009.

    Article  CAS  Google Scholar 

  • Grill, E., Winnaker, E.L., Zenk, M.H.: Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothionineins. — Proc. nat. Acad. Sci. USA 34: 439–443, 1987.

    Article  Google Scholar 

  • Hare, P.D., Cress, W.A.: Metabolic implications of stress induced proline accumulation in plants. — Plant Growth Regul. 21: 79–102, 1997.

    Article  CAS  Google Scholar 

  • Kumar, S., Singla-Pareek, S.L., Reddy, M.K., Sopory, S.K.: Glutathione: biosynthesis, homeostasis and its role in abiotic stresses. — J. Plant Biol. 30: 179–187, 2003.

    Google Scholar 

  • Liso, R., De Tullio, M.C., Ciraci, S., Balestrini, R., La Rocca, N., Bruno, L., Chiappetta, A., Bitonti, M.B., Bonfante, P., Arrigoni, O.: Localization of ascorbic acid, ascorbic acid oxidase, and glutathione in roots of Cucurbita maxima L. — J. exp. Bot. 55: 2589–2597, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Maksymiec, W., Krupa Z.: Effects of methyl jasmonate and excess copper on root and leaf growth. — Biol. Plant. 51: 322–326, 2007.

    Article  CAS  Google Scholar 

  • Maksymiec, W., Wojcik, M., Krupa, Z.: Variation in oxidative stress and photochemical activity in Arabidopsis thaliana leaves subjected to cadmium and excess copper in the presence or absence of jasmonate and ascorbate. — Chemosphere 66: 421–427, 2007.

    Article  CAS  PubMed  Google Scholar 

  • May, M.J., Vernoux, T., Sanchez-Fernandez, R., Van Montagu, M., Inze, D.: Evidence for posttranscriptional activation of gamma-glutamylcysteine synthetase during plant stress responses. — Proc. nat. Acad. Sci. USA 95: 12049–12054, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Mohanpuria, P., Rana, N.K., Yadav, S.K.: Cadmium induced oxidative stress influence on glutathione metabolic genes of Camellia sinensis (L.) O. Kuntze. — Environ. Toxicol. 67: 368–374, 2007.

    Article  Google Scholar 

  • Mossor-Pietraszewska, T., Kwit, M., Legiewicz, M.: The influence of aluminium ions on activity changes of some dehydrogenases and aminotransferases in yellow lupine. — Biol. Bull. Poznan 34: 47–48, 1997.

    Google Scholar 

  • Mouratao, M.P., Martins, L.L., Campos-Andrada, M.P.: Physiological responses of Lupinus luteus to different copper concentrations. — Biol. Plant. 53: 105–111, 2009.

    Article  Google Scholar 

  • Nguyen, V.T., Burow, M.D., Nguyen, H.T., Le, B.T., Le, T.D., Paterson, A.H.: Molecular mapping of genes conferring aluminum tolerance in rice (Oryza sativa L.). — Theor. appl. Genet. 102: 1002–1010, 2001.

    Article  CAS  Google Scholar 

  • Quartacci, M.F., Cosi, E., Navari-Izzo, F.: Lipids and NADPH-dependent superoxide production in plasma membrane vesicles from roots of wheat grown under copper deficiency or excess. — J. exp. Bot. 52: 77–84, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Rao, K.V.M., Sresty, T.V.S.: Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. — Plant Sci. 157: 113–128, 2000.

    Article  Google Scholar 

  • Richards, K.D., Schott, E.J., Sharma, Y.K., Davis, K.R., Gardner, R.C.: Aluminum induces oxidative stress genes in Arabidopsis thaliana. — Plant Physiol. 116: 409–418, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Sanita di Toppi, L., Gabbrielli, R.: Response to cadmium in higher plants. — Environ. exp. Bot. 41: 105–130, 1999.

    Article  Google Scholar 

  • Sarry, J.E., Kuhn, L., Ducruix, C., Lafaye, A., Junot, C., Hugouvieux, V., Jourdain, A., Bastien, O., Fievet, J.B., Vailhen, D., Amekraz, B., Moulin, C., Ezan, E., Garin, J., Bourguignon, J.: The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses. — Proteomics 6: 2180–2198, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Shamsi, I. H., Wei, K., Jilani, G., Zhang, G.P.: Interactions of cadmium and aluminum toxicity in their effect on growth and physiological parameters in soybean. — J. Zhejiang Univ. Sci. 8: 181–188, 2007.

    Article  CAS  Google Scholar 

  • Shigeoka, S., Ishikawa, T., Tamoi, M., Miyagawa, Y., Takeda, T., Yabuta, Y., Yoshimura, K.: Regulation and function of ascorbate peroxidase isoenzymes. — J. exp. Bot. 53: 1305–1319, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Singh, K., Raizada, J., Bhardwaj, P., Ghawana, S., Rani, A., Singh, H., Kaul, K., Kumar, S.: 26S rRNA-based internal control gene primer pair for reverse transcriptionpolymerase chain reaction-based quantitative expression studies in diverse plant species. — Anal. Biochem. 335: 330–333, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Singla-Pareek, S.L., Yadav, S.K., Pareek, A., Reddy, M.K., Sopory, S.K.: Transgenic tobacco overexpressing glyoxalase pathway enzymes grow and set viable seeds in zinc-spiked soils. — Plant Physiol. 140: 613–623, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Wang, C., Oliver, D.J.: Cloning of the cDNA and genomic clones for glutathione synthetase from Arabidopsis thaliana and complementation of a gsh2 mutant in fission yeast. — Plant mol. Biol. 31: 1093–1104, 1996.

    Article  CAS  PubMed  Google Scholar 

  • Xiang, C., Oliver, D.J.: Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. — Plant Cell 10: 1539–1550, 1998.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Yadav.

Additional information

Acknowledgements: We thank our Director, Dr. P.S. Ahuja for valuable suggestions and guidance during the pursuance of this research work. This work was gratefully supported by grants from Council for Scientific and Industrial Research (CSIR), Govt. of India.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yadav, S.K., Mohanpuria, P. Responses of Camellia sinensis cultivars to Cu and Al stress. Biol Plant 53, 737–740 (2009). https://doi.org/10.1007/s10535-009-0134-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-009-0134-8

Additional key words

Navigation