Skip to main content
Log in

Impact of different environmental conditions on the aggregation of biogenic U(IV) nanoparticles synthesized by Desulfovibrio alaskensis G20

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

This study investigates the impact of specific environmental conditions on the formation of colloidal U(IV) nanoparticles by the sulfate reducing bacteria (SRB, Desulfovibrio alaskensis G20). The reduction of soluble U(VI) to less soluble U(IV) was quantitatively investigated under growth and non-growth conditions in bicarbonate or 1,4-piperazinediethanesulfonic acid (PIPES) buffered environments. The results showed that under non-growth conditions, the majority of the reduced U nanoparticles aggregated and precipitated out of solution. High resolution transmission electron microscopy revealed that only a very small fraction of cells had reduced U precipitates in the periplasmic spaces in the presence of PIPES buffer, whereas in the presence of bicarbonate buffer, reduced U was also observed in the cytoplasm with greater aggregation of biogenic U(IV) particles at higher initial U(VI) concentrations. The same experiments were repeated under growth conditions using two different electron donors (lactate and pyruvate) and three electron acceptors (sulfate, fumarate, and thiosulfate). In contrast to the results of the non-growth experiments, even after 0.2 μm filtration, the majority of biogenic U(IV) remained in the aqueous phase resulting in potentially mobile biogenic U(IV) nanoparticles. Size fractionation results showed that U(IV) aggregates were between 18 and 200 nm in diameter, and thus could be very mobile. The findings of this study are helpful to assess the size and potential mobility of reduced U nanoparticles under different environmental conditions, and would provide insights on their potential impact affecting U(VI) bioremediation efforts at subsurface contaminated sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdelouas A, Lutze W, Nuttall HE (1999) Oxidative dissolution of uraninite precipitated on Navajo sandstone. J Contam Hydrol 36:353–375

    Article  CAS  Google Scholar 

  • Anderson RT, Vrionis HA, Ortiz-Bernad I, Resch CT, Long PE, Dayvault R, Karp K, Marutzky S, Metzler DR, Peacock A, White DC, Lowe M, Lovley DR (2003) Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl Environ Microbiol 69:5884–5891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnold RG, DeChristina TJ, Hoffman MR (1988) Reductive dissolution of Fe(III) oxides by Pseudomonas sp. 200. Biotechnol Bioengineer 32:1081–1096

    Article  CAS  Google Scholar 

  • Bargar JR, Bernier-Latmani R, Giammar DE, Tebo BM (2008) Biogenic uraninite nanoparticles and their importance for uranium remediation. Elements 4(6):407–412

    Article  Google Scholar 

  • Bernier-Latmani R, Veeramani H, Della Vecchia E, Junier P, Lezama-Pacheco JS, Suvorova EI, Sharp JO, Wigginton NS, Bargar JR (2010) Non-uraninite products of microbial U(VI) reduction. Environ Sci Technol 44:9456–9462

    Article  CAS  PubMed  Google Scholar 

  • Bethke CM, Sanford RA, Kirk MF, Jin Q, Flynn TM (2011) The thermodynamic ladder in geomicrobiology. Am J Sci 311(3):183–210

    Article  CAS  Google Scholar 

  • Beyenal H, Sani RK, Peyton BM, Dohnalkova A, Amonette JE, Lewandowski Z (2004) Uranium immobilization by sulfate reducing biofilms. Environ Sci Technol 38:2067–2074

    Article  CAS  PubMed  Google Scholar 

  • Boyanov MI, Fletcher KE, Kwon MJ, Rui X, O’Loughlin EJ, Löffler FE, Kemner KM (2011) Solution and microbial controls on the formation of reduced U(IV) species. Environ Sci Technol 45:8336–8344

    Article  CAS  PubMed  Google Scholar 

  • Burgos WD, McDonough JT, Senko JM, Zhang G, Dohnalkova AC, Kelly SD, Kemner KM (2008) Characterization of uraninite nanoparticles produced by Shewanella oneidensis MR-1. Geochim Cosmochim Acta 72(20):4901–4915

    Article  CAS  Google Scholar 

  • Converse BJ, Wu T, Findlay RH, Roden EE (2013) U (VI) reduction in sulfate-reducing subsurface sediments amended with ethanol or acetate. Appl Environ Microbiol 79(13):4173–4177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elias DA, Suflita JM, McInerney MJ, Krumholz LR (2004) Periplasmic cytochrome c3 of Desulfovibrio vulgaris is directly involved in H2-mediated metal but not sulfate reduction. Appl Environ Microbiol 70:413–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esteve-Núnez A, Núnez C, Lovley DR (2004) Preferential reduction of Fe(III) over fumarate by Geobacter sulfurreducens. J Bacteriol 186(9):2897–2899

    Article  PubMed  PubMed Central  Google Scholar 

  • Finneran KT, Housewright ME, Lovley DR (2002) Multiple influences of nitrate on uranium solubility during bioremediation of uranium-contaminated subsurface sediments. Environ Microbiol 4:510–516

    Article  CAS  PubMed  Google Scholar 

  • Fletcher KE, Boyanov MI, Thomas SH, Wu Q, Kemner KM, Löffler FE (2010) U(VI) reduction to mononuclear U(IV) by Desulfitobacterium species. Environ Sci Technol 44(12):4705–4709

    Article  CAS  PubMed  Google Scholar 

  • Franklin NM, Stauber JL, Markich SJ, Lim RP (2000) pH-Dependent toxicity of copper and uranium to a tropical freshwater alga (Chlorella sp.). Aquat Toxicol 48:275–289

    Article  CAS  PubMed  Google Scholar 

  • Fredrickson JK, Zachara JM, Kennedy DW, Duff MC, Gorby YA, Li SW, Krupka KM (2000) Reduction of U(VI) in goethite (a-FeOOH) suspensions by a dissimilatory metal reducing bacterium. Geochim Cosmochim Acta 64:3085–3098

    Article  CAS  Google Scholar 

  • Fredrickson JK, Zachara JM, Kennedy DW, Liu C, Duff MC, Hunter DB, Dohnalkova A (2002) Influence of Mn oxides on the reduction of uranium(VI) by the metal-reducing bacterium Shewanella putrefaciens. Geochim Cosmochim Acta 66:3247–3262

    Article  CAS  Google Scholar 

  • Ganesh R, Robinson KG, Reed GD, Sayler G (1997) Reduction of hexavalent uranium from organic complexes by sulfate- and iron-reducing bacteria. Appl Environ Microbiol 63:4385–4391

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gorby YA, Lovley DR (1992) Enzymatic uranium precipitation. Environ Sci Technol 16:205–207

    Article  Google Scholar 

  • Hauser LJ, Land ML, Brown SD, Larimer F, Keller KL, Rapp-Giles BJ, Price MN, Lin M, Bruce DC, Detter JC, Tapia R (2011) Complete genome sequence and updated annotation of Desulfovibrio alaskensis G20. J Bacteriol 193(16):4268–4269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holmes DE, Finneran KT, Lovley DR (2002) Enrichment of Geobacteraceae associated with stimulation of dissimilatory metal reduction in uranium-contaminated aquifer sediments. Appl Environ Microbiol 68:2300–2306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Istok JD, Senko JM, Krumholz LR, Watson D, Bogle MA, Peacok A, Chang Y-J, White DC (2004) In situ bioreduction of technitium uranium in a nitrate-contaminated aquifer. Environ Sci Technol 38:468–475

    Article  CAS  PubMed  Google Scholar 

  • Junier P, Suvorova EI, Bernier-Latmani R (2010) Effect of competing electron acceptors on the reduction of U (VI) by Desulfotomaculum reducens. Geomicrobiol J 27(5):435–443

    Article  CAS  Google Scholar 

  • Liu CX, Gorby YA, Zachara JM, Fredrickson JK, Brown CF (2002) Reduction kinetics of Fe(III), Co(III), U(VI) Cr(VI) and Tc(VII) in cultures of dissimilatory metal-reducing bacteria. Biotech Bioeng 80:637–649

    Article  CAS  Google Scholar 

  • Lovley DR (1991) Dissimilatory Fe and Mn reduction. Micobiol Rev 55:259–287

    CAS  Google Scholar 

  • Lovley DR, Phillips EJP (1992) Bioremediation of uranium contamination with enzymatic uranium reduction. Environ Sci Technol 26:2228–2234

    Article  CAS  Google Scholar 

  • Luo WS, Wu WM, Yan TF, Criddle CS, Jardine PM, Zhou JZ, Gu BH (2007) Influence of bicarbonate, sulfate, and electron donors on biological reduction of uraniumand microbial community composition. Appl Microbiol Biotechnol 77(3):713–721

    Article  CAS  PubMed  Google Scholar 

  • Maleke M, Williams P, Castillo J, Botes E, Ojo A, DeFlaun M, van Heerden E (2015) Optimization of a bioremediation system of soluble uranium based on the biostimulation of an indigenous bacterial community. Environ Sci Pollut Res Intl 22(11):8442–8450

    Article  CAS  Google Scholar 

  • Marshall MJ et al (2006) c-type cytochrome-dependent formation of U(IV) nanoparticles by Shewanella oneidensis. PLoS Biol 4:1324–1333

    Article  CAS  Google Scholar 

  • Marshall MJ, Dohnalkova AC, Kennedy DW, Plymale AE, Thomas SH, Loffler FE, Sanford RA, Zachara JM, Fredrickson JK, Beliaev AS (2009) Electron donor-dependent radionuclide reduction and nanoparticle formation by Anaeromyxobacter dehalogenans strain 2CP-C. Environ Microbiol 11(2):534–543

    Article  CAS  PubMed  Google Scholar 

  • Moon HS, Komlos J, Jaffé PR (2009) Biogenic U(IV) oxidation by dissolved oxygen and nitrate in sediment after prolonged U(VI)/Fe(III)/SO(4)(2-) reduction. J Contam Hydrol 105:18–27

    Article  CAS  PubMed  Google Scholar 

  • Nealson KH, Saffarini D (1994) Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. Annu Rev Microbiol 48:311–343

    Article  CAS  PubMed  Google Scholar 

  • Nevin KP, Finneran KT, Lovley DR (2003) Microorganisms associated with uranium bioremediation in a high-salinity subsurface sediment. Appl Environ Microbiol 69(6):3672–3675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2)—a computer program for speciation, batch-reaction, onedimensional transport, and inverse geochemical calculations. US Department of Transport modeling Batch-reaction and transport calculations, Denver

    Google Scholar 

  • Payne RB, Gentry DM, Rapp-Giles BJ, Casalot L, Wall JD (2002) Uranium reduction by Desulfovibrio desulfuricans strain G20 and a cytochrome c3 mutant. Appl Environ Microbiol 68(6):3129–3132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Payne RB, Casalot L, Rivere T, Terry JH, Larsen L, Giles BJ, Wall JD (2004) Interaction between uranium and the cytochrome c(3) of Desulfovibrio desulfuricans strain G20. Archives Microbiol 181:398–406

    Article  CAS  Google Scholar 

  • Pietzsch K, Babel W (2003) A sulfate-reducing bacterium that can detoxify U(VI) and obtain energy via nitrate reduction. J Basic Microbiol 43:348–361

    Article  CAS  PubMed  Google Scholar 

  • Prakash O, Gihring TM, Dalton DD, Chin KJ, Green SJ, Akob DM, Kostka JE (2010) Geobacter daltonii sp. nov., an Fe(III)-and uranium (VI)-reducing bacterium isolated from a shallow subsurface exposed to mixed heavy metal and hydrocarbon contamination. Intl J Syst Evol Microbiol 60(3):546–553

    Article  CAS  Google Scholar 

  • Sani RK, Geesey G, Peyton BM (2001) Assessment of Pb toxicity to Desulfovibrio desulfuricans G20: influence of components of lactate C medium. Adv Environ Res 5(3):269–276

    Article  CAS  Google Scholar 

  • Sani RK, Peyton BM, Amonette JE, Geesey GG (2004) Reduction of uranium(VI) under sulfate reducing conditions in the presence of Fe(III)-(hydr)oxides. Geochim Cosmochim Acta 68:2639–2648

    Article  CAS  Google Scholar 

  • Sani RK, Peyton BM, Dohnalkova A (2006) Effect of uranium(VI) in aqueous media on Desulfovibrio desulfuricans G20. Environ Toxico Chem 25:1231–1238

    Article  CAS  Google Scholar 

  • Sani RK, Peyton BM, Dohnalkova A (2008) Comparison of uranium(VI) removal by Shewanella oneidensis MR-1 in flow and batch reactors. Water Res 42(12):2993–3002

    Article  CAS  PubMed  Google Scholar 

  • Schofield EJ, Veeramani H, Sharp JO, Suvorova E, Bernier-Latmani R, Mehta A, Stahlman J, Clark DL, Conradson SD, Ilton ES, Bargar JR (2008) Structure of biogenic uraninite produced by Shewanella oneidensis strain MR-1. Environ Sci Technol 42(21):7898–7904

    Article  CAS  PubMed  Google Scholar 

  • Senko JM, Kelly SD, Dohnalkova AC, McDonough JT, Kemner KM, Burgos WD (2007) The effect of U (VI) bioreduction kinetics on subsequent reoxidation of biogenic U (IV). Geochim Cosmochim Acta 71(19):4644–4654

    Article  CAS  Google Scholar 

  • Sharpe JO, Schofield EL, Veeramani H, Suvorova EI, Kennedy DW, Marshall MJ, Metha A, Bargar JR, Bernier-Latmani R (2009) Structural similarities between biogenic uraninites produced by phylogenetically and metabolically diverse bacteria. Environ Sci Technol 43:8295–8301

    Article  Google Scholar 

  • Shelobolina ES, Vrionis HA, Findlay RH, Lovley DR (2008) Geobacter uraniireducens sp. nov., isolated from subsurface sediment undergoing uranium bioremediation. Intl J Syst Evol Microbiol 58(5):1075–1078

    Article  CAS  Google Scholar 

  • Singh G, Şengör SS, De J, Bhalla A, Kumar S, Stewart B, Squillace E, Spycher N, Ginn T, Peyton B, Sani RK (2014) Reoxidation of biogenic reduced uranium—a challenge towards bioremediation. Crit Rev Environ Sci Technol 44:391–415

    Article  CAS  Google Scholar 

  • Spear JR, Figueroa LA, Honeyman BD (1999) Modeling the removal of uranium U(VI) from aqueous solutions in the presence of sulfate reducing bacteria. Environ Sci Technol 33:2667–2675

    Article  CAS  Google Scholar 

  • Spycher NF, Issarangkun M, Stewart B, Sengor S, Belding E, Ginn TM, Peyton BM, Sani RK (2011) On modeling biogenic uraninite precipitation and reoxidation by Iron(III)(hydr)oxides: thermodynamic and kinetic considerations. Geochim Cosmochim Acta 75:4426–4440

    Article  CAS  Google Scholar 

  • Stylo M, Neubert N, Roebbert Y, Weyer S, Bernier-Latmani R (2015) Mechanism of uranium reduction and immobilization in Desulfovibrio vulgaris biofilms. Environ Sci Technol 49(17):10553–10561

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y, Suko T (2006) Geomicrobiological factors that control uranium mobility in the environment: update on recent advances in the bioremediation of uranium-contaminated sites. J Mineral Pet Sci 101(6):299–307

    Article  CAS  Google Scholar 

  • Suzuki Y, Kemner KM, Banfield JF (2002) Nanometre-size products of uranium bioreduction. Nature 419:134

    Article  CAS  PubMed  Google Scholar 

  • Tapia-Rodriguez A, Luna-Velasco A, Field JA, Sierra-Alvarez R (2010) Anaerobic bioremediation of hexavalent uranium in groundwater by reductive precipitation with methanogenic granular sludge. Water Res 44(7):2153–2162

    Article  CAS  PubMed  Google Scholar 

  • Vrionis HA, Anderson RT, Ortiz-Bernad I, O’Neill KR, Resch CT, Peacock AD, Dayvault R, White DC, Long PE, Lovley DR (2005) Microbiological and geochemical heterogeneity in an in situ uranium bioremediation field site. Appl Environ Microbiol 71:6308–6318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wall JD, Krumholz LR (2006) Uranium reduction. Annu Rev Microbiol 60:149–166

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Frutschi M, Suvorova E, Phrommavanh V, Descostes M, Osman AA, Geipeg G, Bernier-Latmani R (2013) Mobile uranium(IV)-bearing colloids in a mining-impacted wetland. Nat commun 4:2942. doi:10.1038/ncomms3942

    PubMed  Google Scholar 

  • White VE, Knowles CJ (2000) Effect of metal complexation on the bioavailability of nitrilotriacetic acid to Chelatobacter heintzii ATCC 29600. Archives Microbiol 173(5–6):373–382

    Article  CAS  Google Scholar 

  • Williams KH, Long PE, Davis JA, Wilkins MJ, N’guessan AL, Steefel CI, Yang L, Newcomer D, Kerkhof LJ, Mcguinness L, Dayvault R, Lovley DR (2011) Acetate availability and its influence on sustainable bioremediation of uranium-contaminated groundwater. Geomicrobiol J 28:519–539

    Article  CAS  Google Scholar 

  • Wu Q, Sanford RA, Löffler FE (2006) Uranium (VI) reduction by Anaeromyxobacter dehalogenans strain 2CP-C. Appl Environ Microbiol 72(5):3608–3614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu WM, Carley J, Luo J, Ginder-VogelMA Cardenas E, LeighMB Hwang CC, Kelly SD, Ruan CM, Wu LY, Van Nostrand J, Gentry T, Lowe K, Mehlhorn T, Carroll S, LuoWS FieldsMW, Gu BH, Watson D, Kemner KM, Marsh T, Tiedje J, Zhou JZ, Fendorf S, Kitanidis PK, Jardine PM, Criddle CS (2007) In situ bioreduction of uranium (VI) to submicromolar levels and reoxidation by dissolved oxygen. Environ Sci Technol 41:5716–5723

    Article  CAS  PubMed  Google Scholar 

  • Zhou C, Vannela R, Hyun SP, Hayes KF, Rittmann BE (2014a) Growth of Desulfovibrio vulgaris when respiring U (VI) and characterization of biogenic uraninite. Environ sci tech 48(12):6928–6937

    Article  CAS  Google Scholar 

  • Zhou C, Ontiveros-Valencia A, de Saint Cornette, Cyr L, Zevin AS, Carey SE, Krajmalnik-Brown R, Rittmann BE (2014b) Uranium removal and microbial community in a H2-based membrane biofilm reactor. Water Res 64:255–264

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support provided by Environmental Remediation Sciences Program (ERSP) within the office of Biological and Environmental Research, U.S. Department of Energy (grant# DE-FG02-07-ER-64366 with Subaward#G125-08-W1577). A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Rajesh Sani also acknowledges the support from the Department of Chemical and Biological Engineering at the South Dakota School of Mines and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh K. Sani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şengör, S.S., Singh, G., Dohnalkova, A. et al. Impact of different environmental conditions on the aggregation of biogenic U(IV) nanoparticles synthesized by Desulfovibrio alaskensis G20. Biometals 29, 965–980 (2016). https://doi.org/10.1007/s10534-016-9969-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-016-9969-6

Keywords

Navigation