Skip to main content

Advertisement

Log in

Influence of bicarbonate, sulfate, and electron donors on biological reduction of uranium and microbial community composition

  • Environmental Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A microcosm study was performed to investigate the effect of ethanol and acetate on uranium(VI) biological reduction and microbial community changes under various geochemical conditions. Each microcosm contained an uranium-contaminated sediment (up to 2.8 g U/kg) suspended in buffer with bicarbonate at concentrations of either 1 or 40 mM and sulfate at either 1.1 or 3.2 mM. Ethanol or acetate was used as an electron donor. Results indicate that ethanol yielded in significantly higher U(VI) reduction rates than acetate. A low bicarbonate concentration (1 mM) was favored for U(VI) bioreduction to occur in sediments, but high concentrations of bicarbonate (40 mM) and sulfate (3.2 mM) decreased the reduction rates of U(VI). Microbial communities were dominated by species from the Geothrix genus and Proteobacteria phylum in all microcosms. However, species in the Geobacteraceae family capable of reducing U(VI) were significantly enriched by ethanol and acetate in low-bicarbonate buffer. Ethanol increased the population of unclassified Desulfuromonales, while acetate increased the population of Desulfovibrio. Additionally, species in the Geobacteraceae family were not enriched in high-bicarbonate buffer, but the Geothrix and the unclassified Betaproteobacteria species were enriched. This study concludes that ethanol could be a better electron donor than acetate for reducing U(VI) under given experimental conditions, and electron donor and groundwater geochemistry alter microbial communities responsible for U(VI) reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson TR, Vrionis HA, Ortiz-Bernad I, Resch CT, Long PE, Dayvault R, Karp K, Marutzky S, Metzler DR, Peacock A, White DC, Lowe M, Lovley DR (2003) Stimulating the in situ activity of geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl Environ Microbiol 69:5884–5891

    Article  CAS  Google Scholar 

  • Brodie LE, DeSantis TZ, Joyner DC, Baek SM, Larsen JT, Andersen GL, Hazen TC, Richardson PM, Herman DJ, Tokunaga TK, Wan JM, Firestone MK (2006) Application of a high-density oligonucleotide microarray approach to study bacterial population dynamics during uranium . reduction and reoxidation. Appl Environ Microbiol 72:6288–6298

    Article  CAS  Google Scholar 

  • Brooks SC, Fredrickson JK, Caroll SL, Kennedy DW, Zachara JM, Plymale AE, Kelly SD, Kemner KM, Fendof S (2003) Inhibition of bacterial U(VI) reduction. Environ Sci Technol 37:1850–1858

    Article  CAS  Google Scholar 

  • Coates JD, Ellis DJ, Gaw CV, Lovley DR (1999) Geothrix fermentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer. Int J Syst Bacteriol 49:1615–1622

    Article  CAS  Google Scholar 

  • Elias DA, Krumholz LR, Wong D, Long PE, Suflita JM (2003) Characterization of microbial activities and U reduction in a shallow aquifer contaminated by uranium mill tailings. Microb Ecol 46:83–91

    Article  CAS  Google Scholar 

  • Fields WM, Yan T, Rhee SK, Carroll SL, Jardine PM, Watson DB, Criddle CS, Zhou J (2005) Impacts on microbial communities and cultivable isolates from groundwater contaminated with high levels of nitric acid–uranium waste. FEMS Microbiol Ecol 53:417–428

    Article  CAS  Google Scholar 

  • Finneran TK, Anderson RT, Nevin KP, Lovley DR (2002) Potential for bioremediation of uranium-contaminated aquifers with microbial U(VI) reduction. Soil Sediment Contam 11:339–357

    Article  CAS  Google Scholar 

  • Geets J, Borremans B, Vangronsveld J, Diels L, van der Lelie D (2005) Molecular monitoring of SRB community structure and dynamics in batch experiments to examine the applicability of in situ precipitation of heavy metals for groundwater remediation. Soil Sediment Contam 5:149–163

    Article  CAS  Google Scholar 

  • Gu B, Yan H, Zhou P, Watson DB (2005a) Natural humics impact uranium bioreduction and oxidation. Environ Sci Technol 39:5268–5275

    Article  CAS  Google Scholar 

  • Gu B, Wu W, Ginder-Vogel MA, Yan H, Fields MW, Zhou J, Fendorf S, Criddle C, Jardine P (2005b) Bioreduction of uranium in a contaminated soil column. Environ Sci Technol 39:4841–4847

    Article  CAS  Google Scholar 

  • Hazen TC, Tabak HH (2005) Developments in bioremediation of soils and sediments polluted with metals and radionuclides. 2. Field research on bioremediation of metals and radionuclides. Rev Environ Sci Bio/Technol 4:157–183

    Article  CAS  Google Scholar 

  • Holmes ED, Finneran KT, O’Neil RA, Lovley DR (2002) Enrichment of members of the family Geobacteraceae associated with stimulation of dissimilatory metal reduction in uranium-contaminated aquifer sediments. Appl Environ Microbiol 68:2300–2306

    Article  CAS  Google Scholar 

  • Hua B, Xu H, Terry J, Deng B (2006) Kinetics of uranium (VI) reduction by hydrogen sulfide in anoxic aqueous systems. Environ Sci Technol 40:4666–4671

    Article  CAS  Google Scholar 

  • Kohler M, Curtis GP, Meece DE, Davis JA (2004) Methods for estimating adsorbed uranium(VI) and distribution coefficients of contaminated sediments. Environ Sci Technol 38:240–247

    Article  CAS  Google Scholar 

  • Kourtev SP, Nakatsu CH, Konopka A (2006) Responses of the anaerobic bacterial community to addition of organic C in chromium(VI)- and iron(III)-amended microcosms. Appl Environ Microbiol 72:628–637

    Article  CAS  Google Scholar 

  • Küsel K, Dorsch T (2000) Effects of supplemental electron donors on the microbial reduction of Fe(III), sulfate, and CO2 in coal mining-impacted freshwater lake sediments. Microbiol Ecol 40:238–249

    Article  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, UK

    Google Scholar 

  • Langmuir D (1978) Uranium solution–mineral equilibria at low-temperatures with applications to sedimentary ore-deposits. Geochim Cosmochim Acta 42:547–569

    Article  CAS  Google Scholar 

  • Lovley DR, Phillips EJP (1992) Reduction of uranium by Desulfovibrio desulfuricans. Appl Environ Microbiol 58:850–856

    Article  CAS  Google Scholar 

  • Lovley DR, Roden EE, Phillips EJP, Woodward JC (1993) Enzymatic iron and uranium reduction by sulfate reducing bacteria. Mar Geol 113:41–53

    Article  CAS  Google Scholar 

  • Nevin PK, Finneran KT, Lovley DR (2003) Microorganisms associated with uranium bioremediation in a high-salinity subsurface sediment. Appl Environ Microbiol 69:3672–3675

    Article  CAS  Google Scholar 

  • Ortiz-Bernad I, Anderson RT, Vrionis HA, Lovley DR (2004) Resistance of solid-phase U(VI) to microbial reduction during in situ bioremediation of uranium-contaminated groundwater. Appl Environ Microbiol 70:7558–7560

    Article  CAS  Google Scholar 

  • Petrie L, North NN, Dollhopf SL, Balkwill DL, Kostka LE (2003) Enumeration and characterization of iron(III)-reducing microbial communities from acidic subsurface sediments contaminated with uranium. Appl Environ Microbiol 69:7467–7479

    Article  CAS  Google Scholar 

  • Phillips EJP, Landa ER, Lovley DR (1995) Remediation of uranium contaminated soils with bicarbonate extraction and microbial U (VI) reduction. J Ind Microbiol 14:203–207

    Article  CAS  Google Scholar 

  • Roden EE, Lovley DR (1993) Dissimilatory Fe(III) reduction by the marine microorganism Desulfuromonas acetoxidans. Appl Environ Microbiol 59:734–742

    Article  CAS  Google Scholar 

  • Schink B (1985) Fermentation of acetylene by an obligate anaerobe, Pelobacter acetylenicus sp. Nov. Arch of Microbiol 142:295–301

    Article  CAS  Google Scholar 

  • Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506

    Article  CAS  Google Scholar 

  • Senko JM, Istok JD, Suflita JM, Krumholz LR (2002) In-situ evidence for uranium immobilization and remobilization. Environ Sci Technol 36:1491–1496

    Article  CAS  Google Scholar 

  • Shelobolina ES, O’Neill K, Finneran KT, Hayes LA, Lovley DR (2003) Potential for in situ bioremediation of a low-pH, high-nitrate uranium-contaminated groundwater. Soil Sediment Contam 12:865–884

    Article  CAS  Google Scholar 

  • Spear RJ, Figueroa LA, Honeyman BD (2000) Modeling reduction of uranium U(VI) under variable sulfate concentrations by sulfate-reducing bacteria. Appl Environ Microbiol 66:3711–3721

    Article  CAS  Google Scholar 

  • Suzuki Y, Kelly SD, Kemner KM, Banfield JF (2005) Direct microbial reduction and subsequent preservation of uranium in natural near-surface sediment. Appl Environ Microbiol 71:1790–1797

    Article  CAS  Google Scholar 

  • Vrionis AH, Anderson RT, Ortiz-Bernad I, O’Neill KR, Resch CT, Peacock AD, Dayvault R, White DC, Long PE, Lovley DR (2005) Microbiological and geochemical heterogeneity in an in situ uranium bioremediation field site. Appl Environ Microbiol 71:6308–6318

    Article  CAS  Google Scholar 

  • Wu W-M, Carley J, Gentry T, Ginder-Vogel MA, Fienen M, Mehlhorn T, Yan H, Carroll S, Nyman J, Luo J, Gentile ME, Fields MW, Hickey RF, Watson D, Cirpka OA, Fendorf S, Zhou J, Kitanidis P, Jardine PM, Criddle CS (2006) Pilot-scale in situ bioremediation of uranium in a highly contaminated aquifer. 2: U(VI) reduction and geochemical control of U(VI) bioavailability. Environ Sci Technol 40:3986–3995

    Article  CAS  Google Scholar 

  • Wu W-M, Carley J, Luo J, Ginder-vogel MA, Cardenas E, Leigh MB, Hwang C, Kelly SD, Ruan C, Wu L, Van Norstrand J, Gentry T, Lowe K, Mehlhorn T, Carroll S, Luo W, Fields MW, Gu B, Watson D, Kemner KM, Marsh T, Tiedje J, Zhou J, Fendorf S, Kitanidis PK, Jardine PM, Criddle CS (2007) In situ bioreduction of uranium (VI) to submicromolar levels and reoxidation by dissolved oxygen. Environ Sci Technol 41:5716–5723

    Article  CAS  Google Scholar 

  • Zhou P, Gu B (2005) Extraction of oxidized and reduced forms of uranium from contaminated soils: Effects of carbonate concentration and pH. Environ Sci Technol 39:4435–4440

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Research partially support by the US Department of Energy (DOE), Office of Science, Biological and Environmental Research (BER) programs. Oak Ridge National Laboratory is managed by UT-Battelle LLC for US DOE under contract DE-AC05-00OR22725.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baohua Gu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, W., Wu, WM., Yan, T. et al. Influence of bicarbonate, sulfate, and electron donors on biological reduction of uranium and microbial community composition. Appl Microbiol Biotechnol 77, 713–721 (2007). https://doi.org/10.1007/s00253-007-1183-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1183-6

Keywords

Navigation