Skip to main content

Advertisement

Log in

Thermodynamic parameters for Eu(III) binding to Datura innoxia root material

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Plants offer the potential for selective removal and sequestration of toxic heavy metals from contaminated soil. Phytoextraction of metal ions involve their transport through the plant’s root system and into its shoots and leaves. This study investigates the thermodynamics of Eu(III) ion chemical interactions with Datura innoxia plant root materials under solution conditions of pH 4.0 and 5.0. Both changes in enthalpies (∆H) and entropies (∆S) of metal binding were elucidated from isotherms collected under varied temperature conditions using regularized regression data analysis and conditional affinity spectra. ∆H values for binding to root materials at pH 4.0 and 5.0 were each calculated to be +30 kJ/mol. Values of ΔS for these same materials were found to be +170 and +153 J/mol K for solution conditions of pH 4.0 and 5.0, respectively. These results suggest binding to the root material to be entropically driven (∆S° > 0 and ΔH > 0) through possible displacement of waters of solvation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akthar MDN, Sastry KS, Mohan PM (1996) Mechanism of metal ion biosorption by fungal biomass. Biometals 9:21–28

    Article  CAS  Google Scholar 

  • Allison C (1991) Livestock-poisoning plants of New Mexico Rangelands, cooperative extension service circular 531. New Mexico State University, Las Cruces

    Google Scholar 

  • Aquino LCL, Miranda EA, Duarte IS, Rosa PTV, Bueno SMA (2003) Adsorption of human immunoglobulin G onto ethacrylate and histidine-linked methacrylate. Braz J Chem Eng 20:251–262

    Article  CAS  Google Scholar 

  • Babarinde NAA, Oyesiku OO, Dairo OF (2007) Isotherm and thermodynamic studies of the biosorption of copper (II) by Erythrodontium barteri. Int J Phys Sci 2:300–304

    Google Scholar 

  • Basha S, Jha B (2008) Estimation of isotherm parameters for biosorption of Cd(II) and Pb(II) onto Brown Seaweed, Lobophora variegate. J Chem Eng Data 53:449–455

    Article  CAS  Google Scholar 

  • Benhammou A, Yaacoubi A, Nibou L, Tanouti B (2005) Adsorption of metal ions onto Moroccan Stevensite: kinetic and isotherm studies. J Colloid Interface Sci 282:320–326

    Article  PubMed  CAS  Google Scholar 

  • Bieerkens J, Simkiss K (1990) The use of chemical analogues such as Eu/Am in ecotoxicological studies. Funct Ecol 4:445–447

    Article  Google Scholar 

  • Černík M, Borkovec M, Westall J (1995) Regularized least-squares methods for the calculation of discrete and continuous affinity distributions for heterogeneous sorbents. Environ Sci Technol 29:413–425

    Article  PubMed  Google Scholar 

  • Diniz V, Volesky B (2005) Biosorption of La Eu and Yb using Sargassum biomass. Water Res 39:239–247

    Article  PubMed  CAS  Google Scholar 

  • Doran P (2009) Application of plant tissue cultures in phytoremediation research: incentives and limitations. Biotechnol Bioeng 103:60–76

    Article  PubMed  CAS  Google Scholar 

  • Drake L, Rayson G (1996) Plant-derived materials for metal ion-selective binding and preconcentration. Anal Chem 68:22 A–27 A

    Article  CAS  Google Scholar 

  • Drake LR, Lin S, Rayson GD (1996) Chemical modification and metal binding studies of Datura innoxia. Environ Sci Technol 30:110–114

    Article  CAS  Google Scholar 

  • Drake LR, Hensman CE, Lin S, Rayson GD, Jackson PJ (1997) Characterization of metal ion binding sites on Datura innoxia by using lanthanide ion probe spectroscopy. Appl Spectrosc 51:1476–1483

    Article  CAS  Google Scholar 

  • Gardea-Torresdey JL, Arteaga S, Tiemann KJ, Chinaelli R, Pingatore N, Mackay W (2001) Absorption of copper(II) by creosote bush (Larrea tridentata): use of atomic and X-ray absorption spectroscopy. Environ Toxic Chem 20:2572–2579

    CAS  Google Scholar 

  • Good E, Winget GD, Winter W, Connolly TN, Izawa S, Singh RMM (1966) Hydrogen ion buffers for biological research. Biochemistry 5:467

    Article  PubMed  CAS  Google Scholar 

  • Gracés JL, Mas F, Puy J (2004) Affinity distribution functions in myulticomponent heterogeneous adsorption. Analytical inversion of isotherms to obtain affinity spectra. J Chem Phys 120:9266–9276

    Article  Google Scholar 

  • Gracés JL, Mas F, Puy J (2006) Conditional equilibrium constants in multicomponent heterogeneous adsorption: the conditional affinity spectrum. J Chem Phys 124:044710

    Article  Google Scholar 

  • Igwe JC, Abia AA (2007) Equilibrium sorption isotherm studies of Cd(II), Pb(II) and Zn(II) ions detoxification from waste water using unmodified and EDTA-modified maize husk. Electron J Biotechnol 10:536–548

    Article  Google Scholar 

  • Kaushik P, Goyal P (2008) In vitro evaluation of Datura innoxia (thorn-apple) for potential antibacterial activity. Indian J Microbiol 48:353–357

    Article  PubMed  CAS  Google Scholar 

  • Koopal LK, Vos CHW (1993) Adsorption on heterogeneous sufaces. Calculation of the adsorption energy distribution function or the affinity spectrum. Lanmuir 9:2593–2605

    Article  CAS  Google Scholar 

  • Lehto J (2009) Americium in the finnish environment. Boreal Environ Res 14:427–437

    CAS  Google Scholar 

  • Lin S, Drake L, Rayson G (1996) Chemical modification and metal binding studies of Datura innoxia. Environ Sci Technol 30:110–114

    Article  Google Scholar 

  • Nakajima A, Sakaguchi T (1990) Recovery and removal of uranium by using plant wastes. Biomass 21:55–63

    Article  CAS  Google Scholar 

  • Portanova R, Lajunen LH, Tolazzi M, Piispanen J (2003) Critical evalation of stability constants for α-hydroxycarboxylic acid complexes with protons and metal ions and the accompanying enthalpy changes Part II. Aliphatic 2-hydroxycarboxylic acids. Pure Appl Chem 75:495–540

    Article  CAS  Google Scholar 

  • Rey-Castro C, Mongin S, Huidobro C, David C, Salvador J, Barces JL, Galceran J, Mas F, Puy J (2009) Effective affinity distribution for the binding of metal ions to a generic fulvic acid in natural water. Environ Sci Technol 43:7184–7191

    Article  PubMed  CAS  Google Scholar 

  • Sas-Nowosielska A, Kucharski R, Pogrzeba M, Malkowski E (2008) Soil remediation scenarios for heavy metal contaminated soil, soil chemical pollution, risk assessment, remediation and security; proceedings of the NATO Advanced Research Workshop on Soil Pollution, Ri., 301–307

  • Sawalha MF, Peralta-Videa JR, Romero-Gonzalez J, Gardea-Torresdey JL (2006) Biosroption of Cd(II), Cr(III), and Cr(VI) by Saltbush (Atriplex canescens) biomass: thermodynamic and Isotherm Studies. J Colloid Interface Sci 300:100–104

    Article  PubMed  CAS  Google Scholar 

  • Sawalha MF, Peralta-Videa JR, Romero-González D-DM, Gardea-Torresdey JL (2007) Thermodynamic and isotherm studies of the biosorption of Cu (II), Pb(II), and Zn (II) by leaves of Saltbush (Atriplex canescens). J Chem Thermodyn 39:488–492

    Article  CAS  Google Scholar 

  • Sawalha M, Peralta-Videa J, Duarte-Gardea M, Gardea-Torresdey J (2008) Removal of copper, lead, and zinc from contaminated water by saltbush biomass: Analysis of the optimum binding, stripping, and binding mechanism. Bioresour Technol 99:4438–4444

    Article  PubMed  CAS  Google Scholar 

  • Serna D, Moore J, Rayson G (2010) Site-specific Eu(III) binding affinities to a Datura innoxia biosorbent. J Hazard Mater 173:409–414

    Article  PubMed  CAS  Google Scholar 

  • Sips R (1948) On the structure of a catalyst surface. J Chem Phys 16:490–495

    Article  CAS  Google Scholar 

  • Tsai SC, Juang KW, Jan YL (2005) Sorption of cesium on rocks using heterogeneity-based isotherm models. J Radioanal Nucl Chem 266:101–105

    Article  CAS  Google Scholar 

  • Williams PA, Rayson GD (2003) Simultaneous multi-element detection of metal ions bound to a Datura innoxia material. J Hazard Mater 99:277–285

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support of the National Institutes of Health through the MBRS-RISE program (#R25GM061222) and the National Science Foundation under a NSF Graduate Research Fellowship (JLM).

Disclaimer

Any opinions, findings, conclusions or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary D. Rayson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, J.L., Rayson, G.D. Thermodynamic parameters for Eu(III) binding to Datura innoxia root material. Biometals 26, 755–762 (2013). https://doi.org/10.1007/s10534-013-9651-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-013-9651-1

Keywords

Navigation