Skip to main content

Advertisement

Log in

Characterization of basolateral-to-apical transepithelial transport of cadmium in intestinal TC7 cell monolayers

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Cadmium (Cd) is a toxic metal with an extremely long half-life in humans. The intestinal absorption of Cd has been extensively studied but the role the intestinal epithelium may play in metal excretion has never been considered. The basolateral (BL)-to-apical (AP) transepithelial transport of Cd was characterized in TC7 human intestinal cells. Both AP and BL uptakes varied with days in culture, and BL uptake was twofold higher compared to AP in differentiated cultures. A 50% increase in the BL uptake of 0.5 μM 109Cd was observed at pH 8.5 in a chloride but not nitrate medium, suggesting the involvement of a pH-sensitive mechanism of transport for chloro-complexes. Fe and Zn inhibited the BL uptake of Cd whereas complexation by albumin had no effect, but the stimulatory effect of pH 8.5 was lost in the presence of albumin. The BL uptake of [3H]-MPP+ and 109Cd were both inhibited by decynium22 without reciprocal inhibition. MRP2 and MDR1 mRNA levels increased as a function of days in culture. A 25 and 20% decrease in the cellular AP efflux of Cd was observed in the presence of verapamil and probenecid, respectively. In cells treated with BSO, which lowered by 26% the total cellular thiol content, the inhibitory effect of verapamil increased, whereas that of probenecid decreased. These results reveal the existence of a decynium22-sensitive mechanism of transport for Cd at the BL membrane, and suggest the involvement of MDR1 and MRP2 in cellular Cd efflux at the AP membrane. It is conceivable that the intestinal epithelium may contribute to Cd blood excretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DMEM:

Dulbecco’s modified eagle essential minimum medium

FBS:

Fetal bovine serum

MDR1:

Multidrug resistance

MPP+ :

1-Methyl-4-phenylpyridinium iodide

MRP:

Multidrug resistance-associated protein

MTT:

3-[4,5-Dimethyl-2-thiazol-2-yl]-2,5-diphenyltetrazolium bromide

OCT:

Organic cation transporter

TEER:

Transepithelial electrical resistance

References

  • Adamsson E, Piscator M, Nogawa K (1979) Pulmonary and gastrointestinal exposure to cadmium oxide dust in a battery factory. Environ Health Perspect 28:219–222

    Article  PubMed  CAS  Google Scholar 

  • Andersen O, Nielsen JB, Svendsen P (1988) Oral cadmium chloride intoxication in mice: effects of dose on tissues damage, intestinal absorption and relative organ distribution. Toxicology 48:225–236

    Article  PubMed  CAS  Google Scholar 

  • Berggren S, Gall C, Wollnitz N, Ekelund M, Karlbom U, Hoogstraate J, Schrenk D, Lennernäs H (2007) Gene and protein expression of P-glycoprotein, MRP1, MRP2, and CYP3A4 in the small and large human intestine. Mol Pharm 4:252–257

    Article  PubMed  CAS  Google Scholar 

  • Bissonnette P, Gagné H, Coady MJ, Benabdallah K, Lapointe JY, Bertheloot A (1996) Kinetic separation and characterization of three sugar transport modes in Caco-2 cells. Am J Physiol 270:G833–G843

    PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Broeks A, Janssen HW, Calafat J, Plasterk JH (1996) A P-glycoprotein protects Caenorhabditis elegans against natural toxins. EMBO J 14:1858–1866

    Google Scholar 

  • Cardin GB, Mantha M, Jumarie C (2009) Resistance to cadmium as a function of Caco-2 cell differentiation: role of reactive oxygen species in cadmium- but not zinc-induced adaptation mechanisms. Biometals 22:752–769

    Article  Google Scholar 

  • Chantret I, Rodolosse A, Barbat A, Dussaulx E, Brot-Laroche E, Zweibaum A, Rousset M (1994) Differencial expression of sucrase-isomaltase in clones isolated from early and late passages of the cell line Caco-2: evidence for glucose-dependent negative regulation. J Cell Sci 107:213–225

    PubMed  CAS  Google Scholar 

  • Dijkstra M, Havinga R, Vonk RJ, Kuipers F (1996) Bile secretion of cadmium, silver, zinc and copper in the rat. Involvement of various transport systems. Life Sci 59:1237–1246

    Article  PubMed  CAS  Google Scholar 

  • Drab M, Verkada P, Elger M, Kasper M, Lohn M, Lauterbach B, Menne J, Lindschau C, Mende F, Luft FC, Schedi A, Haller H, Kurzchalia TV (2001) Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 293:2449–2452

    Article  PubMed  CAS  Google Scholar 

  • Duizer E, Gilde AJ, Versantvoort CHM, Groten JP (1999) Effects of cadmium chloride on the paracellular barrier function of intestinal epithelial cell lines. Toxicol Appl Pharmacol 155:117–126

    Article  PubMed  CAS  Google Scholar 

  • Duràn JM, Peral MJ, Calonge ML, Llundàin AA (2005) OCTN3: A Na+-independent l-carnithine transporter in entercoytes basolateral membrane. J Cell Physiol 202:929–935

    Article  PubMed  Google Scholar 

  • Elisma F, Jumarie C (2001) Evidence for cadmium uptake through Nramp2: metal speciation studies with Caco-2 cells. Biochem Biophy Res Commun 285:662–668

    Article  CAS  Google Scholar 

  • Englund G, Rorsman F, Rönnblom A, Karlbom U, Lazorova L, Grasjö J, Kindmark A, Artusson (2006) Regional levels of drug transporters along the human intestinal tract: co-expression of ABC and SLC transporters and comparison with Caco-2 cells. Eur J Pharma Sci 29:269–277

    Article  CAS  Google Scholar 

  • Engman HA, Lennernäs H, Taipalensuu J, Otter C, Leidvik B, Artusson P (2001) CYP3A4, CYP3A5, and MDR1 in human small and large intestinal cell lines suitable for drug transport studies. J Pharma Sci 90:1736–1751

    Article  CAS  Google Scholar 

  • Friberg L, Elinder CG, Kjellstrom T, Nordberg GF (1985) Cadmium and health. A toxicological and epidemiological appraisal, vol 1. CRC Press, Boca Raton

    Google Scholar 

  • Gorboulev V, Ulzheimer JC, Akhoundova A, Ulzheimer-Teuber I, Karbach U, Quester S, Baumann C, Lang F, Busch AE, Koepsell H (1997) Cloning and characterization of two human polyspecific organic cation transporters. DNA Cell Biol 16:871–881

    Article  PubMed  CAS  Google Scholar 

  • Gründemann D, Gorboulev V, Gambaryan S, Veyhl M, Koepsell H (1994) Drug excretion mediated by a new prototype of polyspecific transporter. Nature 372:549–552

    Article  PubMed  Google Scholar 

  • Hansen GH, Niels-Christiansen LL, Thorsen E, Immerdal L, Danielsen EM (2000) Chelesterol depletion of enterocytes. Effect on the golgi complex and apical membrane trafficking. J Biol Chem 275:5136–5142

    Article  PubMed  CAS  Google Scholar 

  • Harrap KR (1967) The application of 5,5′-dithiobis-2-nitrobenzoic acid to the determination of the acid-soluble disulphide content of blood. Biochem Pharmacol 16:725–731

    Article  PubMed  CAS  Google Scholar 

  • Hayer-Zillgen M, Brüss M, Bönisch H (2002) Expression and pharmacological profile of the human organic cation transporters hOCT1, hOCT2 and hOCT3. Br J Pharmacol 136:829–836

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann U, Kroemer HK (2004) The ABC Transporters MDR1 and MRP2: multiple functions in disposition of xenobiotics and drug resistance. Drug Metab Rev 36:669–701

    Article  PubMed  CAS  Google Scholar 

  • Jarup L, Berglund M, Elinder CG, Nordberg G, Vahter M (1998) Health effects of cadmium-exposure. A review of the literature and risk estimate. Scand J Work Environ Health 24:1–51

    PubMed  Google Scholar 

  • Jumarie C, Malo C (1994) Alkaline phosphatase and peptidase activities in Caco-2 cells: differential response to triiodothyronine. In Vitro Cell Dev Biol Anim 30A:753–760

    Article  PubMed  CAS  Google Scholar 

  • Jumarie C, Campbell PGC, Berteloot A, Houde M, Denizeau F (1997) Caco-2 cell line used as an in vitro model to study cadmium accumulation in intestinal epithelial cells. J Membr Biol 158:31–48

    Article  PubMed  CAS  Google Scholar 

  • Jumarie C, Campbell PGC, Houde M, Denizeau F (1999) Evidence for an intracellular barrier to cadmium transport through Caco-2 cell monolayers. J Cell Physiol 180:285–297

    Article  PubMed  CAS  Google Scholar 

  • Jumarie C, Fortin C, Houde M, Campbell PGC, Denizeau F (2001) Cadmium uptake by Caco-2 cells: effects of Cd complexation by chloride, glutathione, and phytochelatins. Toxicol Appl Pharmacol 107:29–38

    Article  Google Scholar 

  • Kerper LE, Ballatori N, Clarkson TW (1992) Methylmercury transport across the blood–brain barrier by amino acid carrier. Am J Physiol 262:R761–R765

    PubMed  CAS  Google Scholar 

  • Koepsell H, Endou H (2004) The SLC22 drug transporter family. Eur J Physiol 447:666–676

    Article  CAS  Google Scholar 

  • Kouji H, Inazu M, Yamada T, Tajima H, Aoki T, Matsumiya T (2009) Molecular and functional characterization of choline transporter in human colon carcinoma HT-29 cells. Arch Biochem Biophys 483:90–98

    Article  PubMed  CAS  Google Scholar 

  • Leblondel G, Allain P (1999) Manganese transport by Caco-2 cells. Biol Trace Elem Res 67:13–28

    Article  PubMed  CAS  Google Scholar 

  • Mahraoui L, Rodolosse A, Barbat A, Dussaulx E, Zweibaum A, Rousset M, Brot-Laroche E (1994) Presence and differential expression of SGLT1, GLUT1, GLUT2, GLUT3 and GLUT5 hexose-transporters mRNAs in Caco-2 cell clones in relation to cell growth and glucose consumption. Biochem J 15:629–633

    Google Scholar 

  • McMahon RJ, Cousins RJ (1998) Regulation of the zinc transporter ZnT-1 by dietary zinc. Proc Natl Acad Sci USA 95:4841–4846

    Article  PubMed  CAS  Google Scholar 

  • Mossmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  Google Scholar 

  • Nakayama A, Saitoh H, Oda M, Takada M, Aungst BJ (2000) Region-dependent disappearance of vinblastine in rat small intestine and characterization of its P-glycoprotein-mediated efflux system. Eu J Pharm Sci 11:317–324

    Article  CAS  Google Scholar 

  • Nordberg GF, Kjellstrom T (1979) Metabolic model for cadmium in man. Environ Health Perspect 28:211–217

    Article  PubMed  CAS  Google Scholar 

  • Pham TN, Segui JA, Fortin C, Campbell PGC, Denizeau F, Jumarie C (2004) Cadmium uptake in rat hepatocytes in relation to speciation and to complexation with metallothionein and albumin. J Cell Physiol 201:320–330

    Article  PubMed  CAS  Google Scholar 

  • Pinot F, Freps SE, Bachelet M, Hainaut P, Bakonyi M, Polla BS (2000) Cadmium in the environment: sources mechanisms of biotoxicity and biomarkers. Rev Environ Health 15:299–323

    Article  PubMed  CAS  Google Scholar 

  • Pinto M, Robine-Leon S, Appay MD (1983) Enterocyte-like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture. Biol Cell 47:323–330

    Google Scholar 

  • Prozialeck WC, Lamar PC (1993) Surface binding and uptake of cadmium (Cd2+) by LLC-PK1 cells on permeable membrane supports. Arch Toxicol 67:113–119

    Article  PubMed  CAS  Google Scholar 

  • Raffaniello RD, Lee SY, Teichberg S, Wapnir RA (1992) Distinct mechanisms of zinc uptake at the apical and basolateral membranes of Caco-2 cells. J Cell Physiol 152:356–361

    Article  PubMed  CAS  Google Scholar 

  • Roberts CA, Clark JM (1988) In vivo depression of reserve albumin binding capacity by cadmium: a preliminary evaluation. Life Sci 42:1369–1374

    Article  PubMed  CAS  Google Scholar 

  • Rodal SK, Skretting G, Garred O, Vilhardt F, van Deurs B, Sandvig K (1999) Extraction of cholesterol with methyl-beta-cyclodextrin perturbs formation of clathrin-coated endocytic vesicles. Mol Biol Cell 10:961–974

    PubMed  CAS  Google Scholar 

  • Rousset M, Chantret I, Darmoul D (1989) Reversible forskolin induced impairment of sucrase-isomaltase mRNA levels, biosynthesis and transport to the brush border membrane in Caco-2 cells. J Cell Physiol 141:627–635

    Article  PubMed  CAS  Google Scholar 

  • Rusch GM, O’Grodnick JS, Rinehart WE (1986) Acute inhalation study in rat of comparative uptake, distribution and excretion of different cadmium containing materials. Am Ind Hyg Assoc 47:754–763

    Article  CAS  Google Scholar 

  • Seithel A, Karlsson J, Hilgendorf C, Björquist A, Ungell AL (2006) Variability in mRNA expression of ABC- and SLC-transporters in human intestinal cells: comparison between human segments and Caco-2 cells. Eur J Pharm Sci 28:291–299

    Article  PubMed  CAS  Google Scholar 

  • Shaikh ZA, Blazka ME, Endo T (1995) Metal transport in cells: cadmium uptake by rat hepatocytes and renal cortical epithelial cells. Environ Health Perspect 103:73–75

    PubMed  CAS  Google Scholar 

  • Shen H, Qin H, Guo J (2008) Cooperation of metallothionein and zinc transporters for regulating zinc homeostasis in human intestinal Caco-2 cells. Nutr Res 28:406–413

    Article  PubMed  CAS  Google Scholar 

  • Sugawara N, Lai YR, Sugaware C, Arizono K (1998) Decreased hepatobiliary secretion of inorganic mercury, its deposition and toxicity in the Eisai hyperbilirubinemic rat with no hepatic canalicular organic anion transporter. Toxicology 126:23–31

    Article  PubMed  CAS  Google Scholar 

  • Szczypka MS, Wemmie JA, Moye-Rowley WS, Thiele DJ (1994) A yeast metal resistance protein similar to human cystic fibrosis transmembrane conductance regulator (CFTR) and multidrug resistance-associated protein. J Biol Chem 269:22853–22857

    PubMed  CAS  Google Scholar 

  • Traber PG (1994) Differentiation of intestinal epithelial cells: lessons from the study of intestine-specific gene expression. J Lab Clin Med 128:467–477

    Google Scholar 

  • Urakami Y, Okuda M, Masuda S, Saito H, Inui KI (1998) Functional characteristics and membrane localization of rat multispecific organic cation transporters, OCT1 and OCT2, mediating tubular secretion of cationic drugs. J Pharmacol Exp Ther 287:800–805

    PubMed  CAS  Google Scholar 

  • Vachon PH, Beaulieu JF (1992) Transient mosaic patterns of morphological and functional differentiation in the Caco-2 cells. Gastroenterology 103:414–423

    PubMed  CAS  Google Scholar 

  • Wang LH, Rothberg KG, Anderson RG (1993) Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. J Cell Biol 123:1107–1117

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Gorset W, Dresser MJ, Giacomini KM (1999) The interaction of n-tetraalkylammonium compounds with a human organic cation transporter, hOCT1. J Pharmacol Exp Ther 288:1192–1198

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by NSERC (Discovery grant CJ), the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Jumarie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carrière, P., Mantha, M., Champagne-Paradis, S. et al. Characterization of basolateral-to-apical transepithelial transport of cadmium in intestinal TC7 cell monolayers. Biometals 24, 857–874 (2011). https://doi.org/10.1007/s10534-011-9440-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-011-9440-7

Keywords

Navigation