Skip to main content

Advertisement

Log in

Investigations of Piperazine Derivatives as Intestinal Permeation Enhancers in Isolated Rat Intestinal Tissue Mucosae

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

A limiting factor for oral delivery of macromolecules is low intestinal epithelial permeability. 1-Phenylpiperazine (PPZ), 1-(4-methylphenyl) piperazine (1-4-MPPZ) and 1-methyl-4-phenylpiperazine (1-M-4-PPZ) have emerged as potential permeation enhancers (PEs) from a screen carried out by others in Caco-2 monolayers. Here, their efficacy, mechanism of action and potential for epithelial toxicity were further examined in Caco-2 cells and isolated rat intestinal mucosae. Using high-content analysis, PPZ and 1-4-MPPZ decreased mitochondrial membrane potential and increased plasma membrane potential in Caco-2 cells to a greater extent than 1-M-4-PPZ. The Papp of the paracellular marker, [14C]-mannitol, and of the peptide, [3H]-octreotide, was measured across rat colonic mucosae following apical addition of the three piperazines. PPZ and 1-4-MPPZ induced a concentration-dependent decrease in transepithelial electrical resistance (TEER) and an increase in the Papp of [14C]-mannitol without causing histological damage. 1-M-4-PPZ was without effect. The piperazines caused the Krebs-Henseleit buffer pH to become alkaline, which partially attenuated the increase in Papp of [14C]-mannitol caused by PPZ and 1-4-MPPZ. Only addition of 1-4-MPPZ increased the Papp of [3H]-octreotide. Pre-incubation of mucosae with two 5-HT4 receptor antagonists, a loop diuretic and a myosin light chain kinase inhibitor, reduced the permeation enhancement capacity of PPZ and 1-4-MPP for [14C]-mannitol. 1-4-MPPZ holds most promise as a PE, but intestinal physiology may also be impacted due to multiple mechanisms of action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

1-4-MPPZ:

1-(4-Methylphenyl)piperazine

1-M-4-PPZ:

1-Methyl-4-phenylpiperazine

BZP:

N-Benzylpiperazine

CPE:

Chemical permeation enhancer

FCCP:

Carbonyl cyanide-p-trifluoromethoxyphenylhydrazone

FITC:

Fluorescein isothiocyanate

I sc :

Short circuit current

KH:

Krebs-Henseleit buffer

MDMA:

3,4-Methylenedioxymethamphetamine

ML9:

1-(5-chloronaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine

MLCK:

Myosin light chain kinase

MMP:

Mitochondrial membrane potential

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tetrazolium

Na/K/2Cl:

Sodium/potassium/chloride cotransporter

P app :

Apparent permeability coefficient

PKA:

Protein kinase A

PKC:

Protein kinase C

PMP:

Plasma membrane potential

PPZ:

1-Phenylpiperazine

TEER:

Transepithelial electrical resistance

References

  1. Usmani SS, Bedi G, Samuel JS, Singh S, Kalra S, Kumar P, et al. THPdb: database of FDA-approved peptide and protein therapeutics. PLoS One. 2017;12:e0181748.

    PubMed  PubMed Central  Google Scholar 

  2. Maher S, Mrsny RJ, Brayden DJ. Intestinal permeation enhancers for oral peptide delivery. Adv Drug Deliv Rev. 2016;106:277–319.

    CAS  PubMed  Google Scholar 

  3. Card JW, Magnuson BA. A review of the efficacy and safety of nanoparticle-based oral insulin delivery systems. Am J Physiol Liver Physiol. 2011;301:G956–67.

    CAS  Google Scholar 

  4. Abramson A, Caffarel-Salvador E, Khang M, Dellal D, Silverstein D, Gao Y, et al. An ingestible self-orienting system for oral delivery of macromolecules. Science. 2019;363:611–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Maher S, Brayden DJ, Casettari L, Illum L. Application of permeation enhancers in oral delivery of macromolecules: an update. Pharmaceutics. 2019;11:41.

    CAS  PubMed Central  Google Scholar 

  6. Lindmark T, Nikkilä T, Artursson P. Mechanisms of absorption enhancement by medium chain fatty acids in intestinal epithelial Caco-2 cell monolayers. J Pharmacol Exp Ther. 1995;275:958–64.

    CAS  PubMed  Google Scholar 

  7. Sonaje K, Chuang E-Y, Lin K-J, Yen T-C, Su F-Y, Tseng MT, et al. Opening of epithelial tight junctions and enhancement of paracellular permeation by chitosan: microscopic, ultrastructural, and computed-tomographic observations. Mol Pharm. 2012;9:1271–9.

    CAS  PubMed  Google Scholar 

  8. Brayden DJ, Alonso M-J. Oral delivery of peptides: opportunities and issues for translation. Adv Drug Deliv Rev. 2016;106:193–5.

    CAS  PubMed  Google Scholar 

  9. Halberg IB, Lyby K, Wassermann K, Heise T, Zijlstra E, Plum-Mörschel L. Efficacy and safety of oral basal insulin versus subcutaneous insulin glargine in type 2 diabetes: a randomised, double-blind, phase 2 trial. Lancet Diabetes Endocrinol. 2019;7:179–88.

    PubMed  Google Scholar 

  10. Bucheit JD, Pamulapati LG, Carter N, Malloy K, Dixon DL, Sisson EM. Oral semaglutide: a review of the first oral glucagon-like peptide-1 receptor agonist. Diabetes Technol Ther. 2019. https://doi.org/10.1089/dia.2019.0185.

  11. Whitehead K, Karr N, Mitragotri S. Safe and effective permeation enhancers for oral drug delivery. Pharm Res. 2008;25:1782–8.

    CAS  PubMed  Google Scholar 

  12. Fein KC, Lamson NG, Whitehead KA. Structure-function analysis of phenylpiperazine derivatives as intestinal permeation enhancers. Pharm Res. 2017;34:1320–9.

    CAS  PubMed  Google Scholar 

  13. Martin RJ. Electrophysiological effects of piperazine and diethylcarbamazine on Ascaris suum somatic muscle. Br J Pharmacol. 1982;77:255–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Campbell H, Cline W, Evans M, Lloyd J, Peck AW. Comparison of the effects of dexamphetamine and 1-benzylpiperazine in former addicts. Eur J Clin Pharmacol. 1973;6:170–6.

    CAS  PubMed  Google Scholar 

  15. Arbo MD, Bastos ML, Carmo HF. Piperazine compounds as drugs of abuse. Drug Alcohol Depend. 2012;122:174–85.

    CAS  PubMed  Google Scholar 

  16. Feuchtl A, Bagli M, Stephan R, Frahnert C, Kölsch H, Kühn K-U, et al. Pharmacokinetics of m-chlorophenylpiperazine after intravenous and oral administration in healthy male volunteers: implication for the pharmacodynamic profile. Pharmacopsychiatry. 2004;37:180–8.

    CAS  PubMed  Google Scholar 

  17. Rendell M. Technosphere inhaled insulin (Afrezza). Drugs Today. 2014;50:813.

    CAS  PubMed  Google Scholar 

  18. Potocka E, Cassidy JP, Haworth P, Heuman D, Van Marle S, Baughman RA. Pharmacokinetic characterization of the novel pulmonary delivery excipient fumaryl diketopiperazine. J Diabetes Sci Technol. 2010;4:1164–73.

    PubMed  PubMed Central  Google Scholar 

  19. Bzik VA, Brayden DJ. An assessment of the permeation enhancer, 1-phenyl-piperazine (PPZ), on paracellular flux across rat intestinal mucosae in Ussing chambers. Pharm Res. 2016;33:2506–16.

    CAS  PubMed  Google Scholar 

  20. Dahlgren D, Sjöblom M, Lennernäs H. Intestinal absorption-modifying excipients: a current update on preclinical in vivo evaluations. Eur J Pharm Biopharm. 2019;142:411–20.

    CAS  PubMed  Google Scholar 

  21. Gershon MD, Tack J. The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology. 2007;132:397–414.

    CAS  PubMed  Google Scholar 

  22. Bunce KT, Elswood CJ, Ball MT. Investigation of the 5-hydroxytryptamine receptor mechanism mediating the short-circuit current response in rat colon. Br J Pharmacol. 1991;102:811–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kellum JM, Budhoo MR, Siriwardena AK, Smith EP, Jebraili SA. Serotonin induces Cl- secretion in human jejunal mucosa in vitro via a non-neural pathway at a 5-HT4 receptor. Am J Phys. 1994;267:G357–63.

    CAS  Google Scholar 

  24. Grider JR, Foxx-Orenstein AE, Jin JG. 5-Hydroxytryptamine4 receptor agonists initiate the peristaltic reflex in human, rat, and guinea pig intestine. Gastroenterology. 1998;115:370–80.

    CAS  PubMed  Google Scholar 

  25. Albuquerque FC, Smith EH, Kellum JM. 5-HT induces cAMP production in crypt colonocytes at a 5-HT4 receptor. J Surg Res. 1998;77:137–40.

    CAS  PubMed  Google Scholar 

  26. Lamberts SWJ, Oosterom R, Neufeld M, Del Pozo E. The somatostatin analog sms 201-995 induces long-acting inhibition of growth hormone secretion without rebound hypersecretion in acromegalic patients. J Clin Endocrinol Metab. 1985;60:1161–5.

    CAS  PubMed  Google Scholar 

  27. Lamberts SWJ, van der Lely A-J, de Herder WW, Hofland LJ. Octreotide. N Engl J Med. 1996;334:246–54.

    CAS  PubMed  Google Scholar 

  28. Lancranjan I, Bruns C, Grass P, et al. Sandostatin LAR®: pharmacokinetics, pharmacodynamics, efficacy, and tolerability in acromegalic patients. Metabolism. 1995;44:18–26.

    CAS  Google Scholar 

  29. Gurel MH, Han Y, Stevens AL, Furtado A, Cox D. Treatment adherence and persistence with long-acting somatostatin analog therapy for the treatment of acromegaly: a retrospective analysis. BMC Pharmacol Toxicol. 2017;18:22.

    PubMed  PubMed Central  Google Scholar 

  30. Biermasz NR. New medical therapies on the horizon: oral octreotide. Pituitary. 2017;20:149–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Tuvia S, Pelled D, Marom K, Salama P, Levin-Arama M, Karmeli I, et al. A novel suspension formulation enhances intestinal absorption of macromolecules via transient and reversible transport mechanisms. Pharm Res. 2014;31:2010–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Brayden DJ, Gleeson J, Walsh EG. A head-to-head multi-parametric high content analysis of a series of medium chain fatty acid intestinal permeation enhancers in Caco-2 cells. Eur J Pharm Biopharm. 2014;88:830–9.

    CAS  PubMed  Google Scholar 

  33. Petersen SB, Nolan G, Maher S, Rahbek UL, Guldbrandt M, Brayden DJ. Evaluation of alkylmaltosides as intestinal permeation enhancers: comparison between rat intestinal mucosal sheets and Caco-2 monolayers. Eur J Pharm Sci. 2012;47:701–12.

    CAS  PubMed  Google Scholar 

  34. Shimazaki T, Tomita M, Sadahiro S, Hayashi M, Awazu S, Shimaz Aki T, et al. Absorption-enhancing effects of sodium caprate and palmitoyl carnitine in rat and human colons. Dig Dis Sci. 1998;43:641–5.

    CAS  PubMed  Google Scholar 

  35. Curtis MJ, Alexander S, Cirino G, Docherty JR, George CH, Giembycz MA, et al. Experimental design and analysis and their reporting II: updated and simplified guidance for authors and peer reviewers. Br J Pharmacol. 2018;175:987–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Rawlinson L-AB, O’Brien PJ, Brayden DJ. High content analysis of cytotoxic effects of pDMAEMA on human intestinal epithelial and monocyte cultures. J Control Release. 2010;146:84–92.

    CAS  PubMed  Google Scholar 

  37. Cerella C, Diederich M, Ghibelli L. The dual role of calcium as messenger and stressor in cell damage, death, and survival. Int J Cell Biol. 2010;2010:546163.

    PubMed  PubMed Central  Google Scholar 

  38. Ungell A-L, Nylander S, Bergstrand S, Sjöberg Å, Lennernäs H. Membrane transport of drugs in different regions of the intestinal tract of the rat. J Pharm Sci. 1998;87:360–6.

    CAS  PubMed  Google Scholar 

  39. Lamson NG, Cusimano G, Suri K, Zhang A, Whitehead KA. The pH of piperazine derivative solutions predicts their utility as transepithelial permeation enhancers. Mol Pharm. 2016;13:578–85.

    CAS  PubMed  Google Scholar 

  40. Tocris (2019) Certificate of Analysis ML9 hydrochloride. https://www.tocris.com/products/ml-9-hydrochloride_0431 

  41. O’Brien PJ. High-content analysis in toxicology: screening substances for human toxicity potential, elucidating subcellular mechanisms and in vivo use as translational safety biomarkers. Basic Clin Pharmacol Toxicol. 2014;115:4–17.

    PubMed  Google Scholar 

  42. Maher S, Kennelly R, Bzik VA, Baird AW, Wang X, Winter D, et al. Evaluation of intestinal absorption enhancement and local mucosal toxicity of two promoters. I. Studies in isolated rat and human colonic mucosae. Eur J Pharm Sci. 2009;38:291–300.

    CAS  PubMed  Google Scholar 

  43. Dahlgren D, Lennernäs H. Intestinal permeability and drug absorption: predictive experimental, computational and in vivo approaches. Pharmaceutics. 2019;11:411.

    CAS  PubMed Central  Google Scholar 

  44. Nedi T, White PJ, Coupar IM, Irving HR. Tissue dependent differences in G-protein coupled receptor kinases associated with 5-HT4 receptor desensitization in the rat gastro-intestinal tract. Biochem Pharmacol. 2011;81:123–33.

    CAS  PubMed  Google Scholar 

  45. Gershon MD. 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr Opin Endocrinol Diabetes Obes. 2013;20:14–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Mawe G, Hoffman J. Serotonin signalling in the gut-functions, dysfunctions and therapeutic targets. Nat Rev Gastroenterol Hepatol. 2013;10:473–86.

  47. Hoffman JM, Tyler K, MacEachern SJ, et al. Activation of colonic mucosal 5-HT 4 receptors accelerates propulsive motility and inhibits visceral hypersensitivity. Gastroenterology. 2012;142:844–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. McLean PG, Borman RA, Lee K. 5-HT in the enteric nervous system: gut function and neuropharmacology. Trends Neurosci. 2007;30:9–13.

    CAS  PubMed  Google Scholar 

  49. Dotevall G, Groll E. Controlled clinical trial of mepiprazole in irritable bowel syndrome. Br Med J. 1974;4:16–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46:D1074–82.

    CAS  PubMed  Google Scholar 

  51. Shin JJ, Saadabadi A (2019) Trazodone. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2019 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK470560/ 

  52. Ning Y, Jin XZ, Hsiao CC, Zhu JX, Chan HC. Regulation of ion transport by 5-hydroxytryptamine in rat colon. Clin Exp Pharmacol Physiol. 2004;31:424–8.

    CAS  PubMed  Google Scholar 

  53. Hecht G, Koutsouris A. Myosin regulation of NKCC1: effects on cAMP-mediated Cl secretion in intestinal epithelia. Am J Physiol Physiol. 1999;277:C441–7.

    CAS  Google Scholar 

  54. Yu D, Marchiando AM, Weber CR, Raleigh DR, Wang Y, Shen L, et al. MLCK-dependent exchange and actin binding region-dependent anchoring of ZO-1 regulate tight junction barrier function. Proc Natl Acad Sci. 2010;107:8237–41.

    CAS  PubMed  Google Scholar 

  55. Gill RK, Saksena S, Tyagi S, Alrefai WA, Malakooti J, Sarwar Z, et al. Serotonin inhibits Na+/H+ exchange activity via 5-HT4 receptors and activation of PKCα in human intestinal epithelial cells. Gastroenterology. 2005;128:962–74.

    CAS  PubMed  Google Scholar 

  56. Gandhi S, Lorimer DD, de Lanerolle P. Expression of a mutant myosin light chain that cannot be phosphorylated increases paracellular permeability. Am J Physiol Physiol. 1997;272:F214–21.

    CAS  Google Scholar 

  57. Hecht G, Pestic L, Nikcevic G, Koutsouris A, Tripuraneni J, Lorimer DD, et al. Expression of the catalytic domain of myosin light chain kinase increases paracellular permeability. Am J Physiol Physiol. 1996;271:C1678–84.

    CAS  Google Scholar 

Download references

Funding

This study was funded by Science Foundation Ireland Grant 13/RC/2073, the CÚRAM Centre for Medical Devices and by the EU Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. J. Brayden.

Ethics declarations

Animals were used in accordance with UCD Animal Research Ethics Committee protocol for use of post-mortem tissue from animals in research (AREC 14-28-Brayden), in adherence with the “Principles of Laboratory Animal Care”, (NIH Publication #85-23, revised in 1985).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 547 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stuettgen, V., Brayden, D.J. Investigations of Piperazine Derivatives as Intestinal Permeation Enhancers in Isolated Rat Intestinal Tissue Mucosae. AAPS J 22, 33 (2020). https://doi.org/10.1208/s12248-020-0416-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-020-0416-9

KEY WORDS

Navigation