Skip to main content
Log in

Plasma membrane ferric reductase activity of iron-limited algal cells is inhibited by ferric chelators

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Iron-limited cells of the green alga Chlorella kesslerii use a reductive mechanism to acquire Fe(III) from the extracellular environment, in which a plasma membrane ferric reductase reduces Fe(III)-chelates to Fe(II), which is subsequently taken up by the cell. Previous work has demonstrated that synthetic chelators both support ferric reductase activity (when supplied as Fe(III)-chelates) and inhibit ferric reductase. In the present set of experiments we extend these observations to naturally-occurring chelators and their analogues (desferrioxamine B mesylate, schizokinen, two forms of dihydroxybenzoic acid) and also two formulations of the commonly-used herbicide N-(phoshonomethyl)glycine (glyphosate). The ferric forms of the larger siderophores (desferrioxamine B mesylate, schizokinen) and Fe(III)-N-(phoshonomethyl)glycine (as the isopropylamine salt) all supported rapid rates of ferric reductase activity, while the iron-free forms inhibited reductase activity. The smaller siderophores/siderophore precursors, 2,3- and 3,4-dihydroxybenzoic acids, did not support high rates of reductase in the ferric form but did inhibit reductase activity in the iron-free form. Bioassays indicated that Fe(III)-chelates that supported high rates of ferric reductase activity also supported a large stimulation in the growth of iron-limited cells, and that an excess of iron-free chelator decreased the growth rate. With respect to N-(phosphonomethyl)glycine, there were differences between the pure compound (free acid form) and the most common commercial formulation (which also contains isopropylamine) in terms of supporting and inhibiting ferric reductase activity and growth. Overall, these results suggest that photosynthetic organisms that use a reductive strategy for iron acquisition both require, and are potentially simultaneously inhibited by, ferric chelators. Furthermore, these results also may provide an explanation for the frequently contradictory results of N-(phosphonomethyl)glycine application to crops: we suggest that low concentrations of this molecule likely solubilize Fe(III), making it available for plant growth, but that higher (but sub-lethal) concentrations decrease iron acquisition by inhibiting ferric reductase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

BICINE:

N,N-bis(2-hydroxyethyl)glycine

BPDS:

Bathophenanthroline disulfonic acid

DFB:

Desferrioxamine B

2,3-DHBA:

2,3-Dihydroxybenzoic acid

3,4-DHBA:

3,4-Dihydroxybenzoic acid

HBED:

N,N′-bis(2-hydroxybenzyl)-ethylenediamine-N,N′-diacetic acid

HEDTA:

Hydroxyethylethylenediaminetriacetic acid

HEPES:

N-(2-hydroxyethyl)piperazine-N′-(2-ethanesulfonic acid)

IPA:

Isopropylamine

PMG:

N-(phosphonomethyl)glycine

References

  • Alldredge AL, Passow U, Logan BE (1993) The abundance and significance of a class of large, transparent organic particles in the ocean. Deep-Sea Res I 40:1131–1140

    Article  CAS  Google Scholar 

  • Allen MM (1968) Simple conditions for growth of unicellular blue-green algae on plates. J Phycol 4:1–4

    Article  CAS  Google Scholar 

  • Allen MD, Del Campo JA, Kropat J, Merchant SS (2007) FEA1, FEA2, and FRE1, encoding two homologous secreted proteins and a candidate ferrireductase, are expressed coordinately with FOX1 and FTR1 in iron-deficient Chlamydomonas reinhardtii. Eukaryot Cell 6:1841–1852

    Article  CAS  PubMed  Google Scholar 

  • Allnutt FCT, Bonner WD Jr (1984) Characteristics of iron uptake from hydroxamate siderophores by Chlorella vulgaris and the correlation between uptake and reduction. J Plant Nutr 7:427–435

    Article  CAS  Google Scholar 

  • Bar-Ness E, Hadar Y, Chen Y, Shanzer A, Libman J (1992) Iron uptake by plants from microbial siderophores—a study with 7-nitrobenz-2 oxa-1,3-diazole-desferrioxamine as fluorescent ferrioxamine B-analog. Plant Physiol 99:1325–1329

    Article  Google Scholar 

  • Barry SM, Challis GL (2009) Recent advances in siderophore biosynthesis. Curr Opin Chem Biol 13:205–215

    Article  CAS  PubMed  Google Scholar 

  • Bellaloui N, Reddy KN, Zablotowicz RM, Abbas HK, Abel CA (2009) Effects of glyphosate application on seed iron and root ferric (III) reductase in soybean cultivars. J Agr Food Chem 57:9569–9574

    Article  Google Scholar 

  • Bergeron RJ, Huang GF, Smith RE, Bharti N, McManis JS, Butler A (2003) Total synthesis and structure revision of petrobactin. Tetrahedron 59:2007–2014

    Article  CAS  Google Scholar 

  • Blair D, Diehl H (1961) Bathophenanthroline disulphonic acid and bathocuproïne disulphonic acid, water soluble reagents for iron and copper. Talanta 7:163–174

    Article  CAS  Google Scholar 

  • Borges F, Guimarães C, Lima JL, Pinto I, Reis S (2005) Potentiometric studies on the complexation of copper(II) by phenolic acids as discrete ligand models of humic substances. Talanta 66:670–673

    Article  CAS  PubMed  Google Scholar 

  • Brüggemann W, Maaskantel K, Moog PR (1993) Iron uptake by leaf mesophyll-cells—the role of the plasma membrane-bound ferric-chelate reductase. Planta 190:151–155

    Article  Google Scholar 

  • Budzikiewicz H, Munzinger M, Taraz K, Meyer JM (1997) Bacterial constituents. 69. Schizokinen, the siderophore of the plant deleterious bacterium Ralstonia (Pseudomonas) solanacearum ATCC 11696. Z Naturforsch C 52:496–503

    CAS  Google Scholar 

  • Calugay RJ, Takeyama H, Mukoyama D, Fukuda Y, Suzuki T, Kanoh K, Matsunaga T (2006) Catechol siderophore excretion by magnetotactic bacterium Magnetospirillum magneticum AMB-1. J Biosci Bioeng 101:445–447

    Article  CAS  PubMed  Google Scholar 

  • Clement PMJ, Hanauske-Abel HM, Wolff EC, Kleinman HK, Park MH (2002) The antifungal drug ciclopirox inhibits deoxyhypusine and proline hydroxylation, endothelial cell growth and angiogenesis in vitro. Int J Cancer 100:491–498

    Article  CAS  PubMed  Google Scholar 

  • de la Guardia MD, Alcántara E (1996) Ferric chelate reduction by sunflower (Helianthus annuus L.) leaves: Influence of light, oxygen, iron-deficiency and leaf age. J Exp Bot 47:669–675

    Article  Google Scholar 

  • Dolfing J, Chardon WJ, Japenga J (1999) Association between colloidal iron, aluminum, phosphorus, and humic acids. Soil Sci 164:171–179

    Article  Google Scholar 

  • Drechsel H, Jung G (1998) Peptide siderophores. J Pept Sci 4:147–181

    Article  CAS  PubMed  Google Scholar 

  • Duhme AK, Hider RC, Khodr H (1996) Spectrophotometric competition study between molybdate and Fe(III) hydroxide on N,N′-bis(2,3-dihydroxybenzoyl)-l-lysine, a naturally occurring siderophore synthesized by Azotobacter vinelandii. Biometals 9:245–248

    Article  CAS  Google Scholar 

  • Eckhardt U, Buckhout TJ (2000) Analysis of the mechanism of iron assimilation in Chlamydomonas reinhardtii: a model system for strategy I plants. J Plant Nutr 23:1797–1807

    Article  CAS  Google Scholar 

  • Eker S, Ozturk L, Yazici A, Erenoglu B, Römheld V, Cakmak I (2006) Foliar-applied glyphosate substantially reduced uptake and transport of iron and manganese in sunflower (Helianthus annuus L.) plants. J Agric Food Chem 54:10019–10025

    Article  CAS  PubMed  Google Scholar 

  • Eldridge ML, Trick CG, Alm AB, DiTullio GR, Rue EL, Bruland KW, Hutchins DA, Wilhelm SW (2004) Phytoplankton community response to a manipulation of bioavailable iron in HNLC waters of the subtropical Pacific Ocean. Aquat Microb Ecol 35:79–91

    Article  Google Scholar 

  • Fernández V, Ebert G, Winkelmann G (2005) The use of microbial siderophores for foliar iron application studies. Plant Soil 272:245–252

    Article  Google Scholar 

  • Fernández V, Del Río V, Pumariño L, Igartua E, Abadía J, Abadía A (2008) Foliar fertilization of peach (Prunus persica (L.) Batsch) with different iron formulations: Effects on re-greening, iron concentration and mineral composition in treated and untreated leaf surfaces. Sci Hort 117:241–248

    Article  Google Scholar 

  • Fernández V, Orera I, Abadía J, Abadía A (2009) Foliar iron-fertilisation of fruit trees: present knowledge and future perspectives—a review. J Hortic Sci Biotechnol 84:1–6

    Google Scholar 

  • Finegold AA, Shatwell KP, Segal AW, Klausner RD, Dancis A (1996) Intramembrane bis-heme motif for transmembrane electron transport conserved in a yeast iron reductase and the human NADPH oxidase. J Biol Chem 271:31021–31024

    Article  CAS  PubMed  Google Scholar 

  • Franzen DW, O’Barr JH, Zollinger RK (2003) Interaction of a foliar application of iron HEDTA and three postemergence broadleaf herbicides with soybeans stressed from chlorosis. J Plant Nutr 26:2365–2374

    Article  CAS  Google Scholar 

  • Gerard C, Njomgang R, Pierrard J-C, Rimbault B, Hugel RP (1987) Modelling the interactions of metal cations with soil organic matter. Part 2. Thermodynamic stability of iron(III) and manganese(II) complexes with three dihydroxybenzoic acids. J Chem Res S 12:294–295

    Google Scholar 

  • Gunnars A, Blomqvist S, Johansson P, Andersson C (2002) Formation of Fe(III) oxyhydroxide colloids in freshwater and brackish seawater, with incorporation of phosphate and calcium. Geochim Cosmochim Acta 66:745–758

    Article  CAS  Google Scholar 

  • Gustafsson JP, Persson I, Kleja DB, Van Schaik JWJ (2007) Binding of iron(III) to organic soils: EXAFS spectroscopy and chemical equilibrium modeling. Environ Sci Technol 41:1232–1237

    Article  CAS  PubMed  Google Scholar 

  • Hantke K (1990) Dihydroxybenzolyserine—a siderophore for E. coli. FEMS Microbiol Lett 67:5–8

    CAS  Google Scholar 

  • Hickford SJH, Kupper FC, Zhang GP, Carrano CJ, Blunt JW, Butler A (2004) Petrobactin sulfonate, a new siderophore produced by the marine bacterium Marinobacter hydrocarbonoclasticus. J Nat Prod 67:1197–1199

    Article  Google Scholar 

  • Holden MJ, Crimmins TJ, Chaney RL (1995) Cu2+ reduction by tomato root plasma membrane vesicles. Plant Physiol 108:1093–1098

    CAS  PubMed  Google Scholar 

  • Hughes EO, Gorham PR, Zehnder A (1958) Toxicity of a unialgal culture of Microcystis aeruginosa. Can J Microbiol 4:225–236

    Article  CAS  PubMed  Google Scholar 

  • Imbert M, Béchet M, Blondeau R (1995) Comparison of the main siderophores produced by some species of Streptomyces. Curr Microbiol 31:129–133

    Article  CAS  Google Scholar 

  • Ito T, Neilands JB (1958) Products of “low-iron fermentation” with Bacillus subtilis: isolation, characterization and synthesis of 2,3-dihydroxybenzoylglycine. J Am Chem Soc 80:4645–4647

    Article  CAS  Google Scholar 

  • Iwade S, Kuma K, Isoda Y, Yoshida M, Kudo I, Nishioka J, Suzuki K (2006) Effect of high iron concentrations on iron uptake and growth of a coastal diatom Chaetoceros sociale. Aquat Microb Ecol 43:177–191

    Article  Google Scholar 

  • Jeong J, Connolly EL (2009) Iron uptake mechanisms in plants: Functions of the FRO family of ferric reductases. Plant Sci 176:709–714

    Article  CAS  Google Scholar 

  • Johnson GV, Lopez A, La Valle Foster N (2002) Reduction and transport of Fe from siderophores—reduction of siderophores and chelates and uptake and transport of iron by cucumber seedlings. Plant Soil 241:27–33

    Article  CAS  Google Scholar 

  • Jolley VD, Hansen NC, Shiffler AK (2004) Nutritional and management related interactions with iron-deficiency stress response mechanisms. Soil Sci Plant Nutr 50:973–981

    CAS  Google Scholar 

  • Keshtacher-Liebson E, Hadar Y, Chen Y (1999) Fe nutrition demand and utilization by the green alga Dunaliella bardawil. Plant Soil 215:175–182

    Article  CAS  Google Scholar 

  • Liu ZD, Kayyali R, Hider RC, Porter JB, Theobald AE (2002) Design, synthesis, and evaluation of novel 2-substituted 3-hydroxypyridin-4-ones: structure-activity investigation of metalloenzyme inhibition by iron chelators. J Med Chem 45:631–639

    Article  CAS  PubMed  Google Scholar 

  • López-Goñi I, Moriyón I, Neilands JB (1992) Identification of 2,3-dihydroxybenzoic acid as a Brucella abortus siderophore. Infect Immun 60:4496–4503

    PubMed  Google Scholar 

  • Maldonado MT, Price NM (2001) Reduction and transport of organically bound iron by Thalassiosira oceanica (Bacillariophyceae). J Phycol 37:298–309

    Article  CAS  Google Scholar 

  • Manthey JA, Tisserat B, Crowley DE (1996) Root responses of sterile-grown onion plants to iron deficiency. J Plant Nutr 19:146–161

    Article  Google Scholar 

  • Matz CJ, Christensen MR, Bone AD, Gress CD, Widenmaier SB, Weger HG (2004) Only iron-limited cells of the cyanobacterium Anabaena flos-aquae inhibit growth of the green alga Chlamydomonas reinhardtii. Can J Bot 82:436–442

    Article  Google Scholar 

  • McKie AT (2008) The role of Dcytb in iron metabolism: an update. Biochem Soc Trans 36:1239–1241

    Article  CAS  PubMed  Google Scholar 

  • Mori S (1999) Iron acquisition by plants. Curr Opin Plant Biol 2:250–253

    Article  CAS  PubMed  Google Scholar 

  • Motekaitis RJ, Martell AE (1985) Metal chelate formation by N-phosphonomethylglycine and related ligands. J Coord Chem 14:139–149

    Article  CAS  Google Scholar 

  • Murphy TP, Lean DRS, Nalewajko C (1976) Blue-green algae: their excretion of iron-selective chelators enables them to dominate other algae. Science 192:900–902

    Article  CAS  PubMed  Google Scholar 

  • Newsome AL, Johnson JP, Seipelt RL, Thompson MW (2007) Apolactoferrin inhibits the catalytic domain of matrix metalloproteinase-2 by zinc chelation. Biochem Cell Biol 85:563–572

    Article  CAS  PubMed  Google Scholar 

  • Nicolaisen K, Moslavac S, Samborski A, Valdebenito M, Hantke K, Maldener I, Muro-Pastor AM, Flores E, Schleiff E (2008) Alr0397 is an outer membrane transporter for the siderophore schizokinen in Anabaena sp strain PCC 7120. J Bact 190:7500–7507

    Article  CAS  PubMed  Google Scholar 

  • Ozturk L, Yazici A, Eker S, Gokmen O, Römheld V, Cakmak I (2008) Glyphosate inhibition of ferric reductase activity in iron deficient sunflower roots. New Phytol 177:899–906

    Article  CAS  PubMed  Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous-equations for assaying chlorophyll-a and chlorophyll-b extracted with 4 different solvents—verification of the concentration of chlorophyll standards by atomic-absorption spectroscopy. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  • Powell PE, Cline GR, Reid CPP, Szaniszlo PJ (1980) Occurrence of hydroxamate siderophore iron chelators in soils. Nature 287:833–834

    Article  CAS  Google Scholar 

  • Rodríguez-Lucena P, Hernández-Apaolaza L, Lucena JJ (2010) Comparison of iron chelates and complexes supplied as foliar sprays and in nutrient solution to correct iron chlorosis of soybean. J Plant Nutr Soil Sci 173:120–126

    Article  Google Scholar 

  • Rroço E, Kosegarten H, Harizaj F, Imani J, Mengel K (2003) The importance of soil microbial activity for the supply of iron to sorghum and rape. Eur J Agron 19:487–493

    Article  Google Scholar 

  • Schaaf G, Ludewig U, Erenoglu BE, Mori S, Kitahara T, von Wiren N (2004) ZmYS1 functions as a proton-coupled symporter for phytosiderophore- and nicotianamine-chelated metals. J Biol Chem 279:9091–9096

    Article  CAS  PubMed  Google Scholar 

  • Schagerlöf U, Wilson G, Hebert H, Al-Karadaghi S, Hägerhäll C (2006) Transmembrane topology of FRO2, a ferric chelate reductase from Arabidopsis thaliana. Plant Mol Biol 62:215–221

    Article  PubMed  Google Scholar 

  • Schmidt W (2003) Iron solutions: acquisition strategies and signaling pathways in plants. Trends Plant Sci 8:188–193

    Article  CAS  PubMed  Google Scholar 

  • Schreiber U, Bilger W, Neubauer C (1994) Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In: Schulze E-D, Caldwell MM (eds) Ecophysiology of photosynthesis. Springer, Berlin, pp 40–70

    Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  CAS  PubMed  Google Scholar 

  • Simpson FB, Neilands JB (1976) Siderochromes in cyanophyceae—isolation and characterization of schizokinen from Anabaena-Sp. J Phycol 12:44–48

    Google Scholar 

  • Temirov YV, Esikova TZ, Kashparov IA, Balashova TA, Vinokurov LM, Alakhov YB (2003) A catecholic siderophore produced by the thermoresistant Bacillus licheniformis VK21 strain. Russ J Bioorg Chem 29:542–549

    Article  CAS  Google Scholar 

  • Timmermans KR, Davey MS, van der Wagt B, Snoek J, Geider RJ, Veldhuis MJW, Gerringa LJA, de Baar HJ (2001) Co-limitation by iron and light of Chaetoceros brevis, C. dichaeta and C. calcitrans (Bacillariophyceae). Mar Ecol Prog Ser 217:287–297

    Article  CAS  Google Scholar 

  • Vansuyt G, Robin A, Briat JF, Curie C, Lemanceau P (2007) Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana. Mol Plant Microbe Interact 20:441–447

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Brown HN, Crowley DE, Szaniszlo PJ (1993) 0 Evidence for direct utilization of a siderophore, ferrioxamine B, in axenically grown cucumber. Plant Cell Environ 16:579–585

    Article  CAS  Google Scholar 

  • Waters BM, Blevins DG, Eide DJ (2002) Characterization of FRO1, a pea ferric-chelate reductase involved in root iron acquisition. Plant Physiol 129:85–94

    Article  CAS  PubMed  Google Scholar 

  • Weger HG (1999) Ferric and cupric reductase activities in the green alga Chlamydomonas reinhardtii: experiments using iron-limited chemostats. Planta 207:377–384

    Article  CAS  Google Scholar 

  • Weger HG, Middlemiss JK, Petterson CD (2002) Ferric chelate reductase activity as affected by the iron-limited growth rate in four species of unicellular green algae (Chlorophyta). J Phycol 38:513–519

    CAS  Google Scholar 

  • Weger HG, Matz CJ, Magnus RS, Walker CN, Fink MB, Treble RG (2006) Differences between two green algae in biological availability of iron bound to strong chelators. Can J Bot 84:400–411

    Article  CAS  Google Scholar 

  • Weger HG, Walker CN, Fink MB (2007) Ferric and cupric reductase activities by iron-limited cells of the green alga Chlorella kessleri: quantification via oxygen electrode. Physiol Plant 131:322–331

    CAS  PubMed  Google Scholar 

  • Weger HG, Lam J, Wirtz NL, Walker CN, Treble RG (2009) High stability ferric chelates result in decreased iron uptake by the green alga Chlorella kessleri owing to decreased ferric reductase activity and chelation of ferrous iron. Botany 87:922–931

    Article  CAS  Google Scholar 

  • Wells ML, Trick CG (2004) Controlling iron availability to phytoplankton in iron-replete coastal waters. Mar Chem 86:1–13

    Article  CAS  Google Scholar 

  • Whittaker M, Floyd CD, Brown P, Gearing AJH (1999) Design and therapeutic application of matrix metalloproteinase inhibitors. Chem Rev 99:2735–2776

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harold G. Weger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sonier, M.B., Weger, H.G. Plasma membrane ferric reductase activity of iron-limited algal cells is inhibited by ferric chelators. Biometals 23, 1029–1042 (2010). https://doi.org/10.1007/s10534-010-9348-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-010-9348-7

Keywords

Navigation