Skip to main content

Advertisement

Log in

Synthesis, characterization and antimicrobial properties of a Co(II)-phthalylsulfathiazolate complex

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

The reaction between phthalylsulfathiazole (H2PST), in alkaline aqueous solution, and cobalt(II) nitrate led to a pink solid, [Co(PST)(H2O)4] (1), which was characterized by elemental and thermogravimetric analysis; FT-IR, Raman and diffuse reflectance spectra. Spectroscopic data reveal that the ligand would be doubly deprotonated and that the Co(II) ion environment is a distorted octahedral one. (1) showed antibacterial activity similar to the ligand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agrawal VK, Bano S, Supuran CT, Khadikar PV (2004) QSAR study on carbonic anhydrase inhibitors: aromatic/heterocyclic sulfonamides containing 8-quinoline-sulfonyl moieties, with topical activity as antiglaucoma agents. Eur J Med Chem 39:593–600

    Article  CAS  PubMed  Google Scholar 

  • AIST National Institute of Advanced Industrial Science and Technology (2010) http://riodb01.ibase.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi. Accessed May 2010

  • Ajibade P, Kolawole G, O’Brien P, Helliwell M, Raftery J (2006) Cobalt(II) complexes of the antibiotic sulfadiazine, the X-ray single crystal structure of [Co(C10H9N4O2S)2(CH3OH)2]. Inorg Chim Acta 359:3111–3116

    Article  CAS  Google Scholar 

  • Alzuet G, Borrás J, Estevan F, Liu-González M, Sanz-Ruiz F (2003) Zinc complexation to N-substituted sulfonamide ligands. Preparation, properties and crystal structure of copper(II) doped {[Zn(sulfamethizolate)2(py)]·H2O}. Inorg Chim Acta 343:56–60

    Article  CAS  Google Scholar 

  • Baccanari D, Tansik R, Joyner S, Fling M, Smith P, Freisheim J (1989) Characterization of Candida albicans dihydrofolate reductase. J Biol Chem 264:1100–1107

    CAS  PubMed  Google Scholar 

  • Balaban A, Khadikar P, Supuran C, Thakurd A, Thakur M (2005) Study on supramolecular complexing ability vis-à-vis estimation of pK a of substituted sulfonamides: dominating role of Balaban index. Bioorg Med Chem Lett 15:3966–3973

    Article  CAS  PubMed  Google Scholar 

  • Barszcz B, Hodorowicz SA, Stadnicka K, Wawrzycka AJ (2005) A comparison of the coordination geometries of some 4-methylimidazole-5-carbaldehyde complexes with Zn(II), Cd(II) and Co(II) ions in the solid state and aqueous solution. Polyhedron 24:627–637

    Article  CAS  Google Scholar 

  • Bellú S, Hure E, Trapé M, Rizzotto M, Sutich E, Sigrist M, Moreno V (2003) The interaction between mercury(II) and sulfathiazole. Quím Nova 26:188–192

    Article  Google Scholar 

  • Bellú S, Hure EM, Trapé M, Trossero C, Molina G, Drogo C, Williams PAM, Atria AM, Muñoz Acevedo JC, Zacchino S, Sortino M, Campagnoli D, Rizzotto M (2005) Synthesis, structure and antifungal properties of Co(II)–sulfathiazolate complexes. Polyhedron 24:501–509

    Article  Google Scholar 

  • Bellú S, Rizzotto M, Okulik N, Jubert A (2007) Interaction sulfathiazole-cobalt: potentiometric determination of species. Quím Nova 30:1136–1142

    Article  Google Scholar 

  • Beloso I, Castro J, García-Vázquez JA, Pérez-Lourido P, Romero J, Sousa A (2006) Electrochemical synthesis and structural characterization of heteroleptic cobalt(II) complexes of N-2-pyridyl sulfonamide ligands. Polyhedron 25:2673–2682

    Article  CAS  Google Scholar 

  • Borrás E, Alzuet G, Borrás J, Server-Carrió J, Castiñeiras A, Liu-González M, Sanz-Ruiz F (2000) Coordination chemistry of sulfamethizole: crystal structures of [Cu(sulfamethizolate)2(py)2(OH2)]·H2O, [M(sulfamethizolate)2(py)2(OH2)2] [M = Co and Ni] and {Cu(sulfamethizolate)2(dmf)2}. Polyhedron 19:1859–1866

    Article  Google Scholar 

  • Bult A (1983) In: Sigel H (ed) Metal ions in biological systems, vol 16. Marcel Decker, New York, pp 261–278

  • Casanova J, Alzuet G, Ferrer S, Borrás J, García-Granda S, Perez-Carreño E (1993) Metal complexes of sulfanilamide derivatives. Crystal structure of [Zn(sulfathiazole)2]·H2O. J Inorg Biochem 51:689–699

    Article  CAS  Google Scholar 

  • Casanova J, Alzuet G, Borrás J, Timoneda J, García-Granda S, Cándano-García I (1994) Coordination behavior of sulfathiazole. Crystal structure of dichloro-disulfathiazole ethanol Cu(II) complex. Superoxide dismutase activity. J Inorg Biochem 56:65–76

    Article  CAS  Google Scholar 

  • Casanova J, Alzuet G, Borrás J, Latorre J, Sanaú M, García-Granda S (1995) Coordination behavior of sulfathiazole. Crystal structure of [Cu (sulfathiazole) (py)3Cl] superoxide dismutase activity. J Inorg Biochem 60:219–230

    Article  CAS  Google Scholar 

  • Casanova J, Alzuet G, Latorre J, Borrás J (1997) Spectroscopic, magnetic, and electrochemical studies of a dimeric N-substituted-sulfanilamide copper(II) complex. X-ray and molecular structure of the Cu2(sulfathiazolato)4 complex. Inorg Chem 36:2052–2058

    Article  CAS  PubMed  Google Scholar 

  • Casanova J, Alzuet G, Ferrer S, Latorre J, Ramírez JA, Borrás J (2000) Superoxide dismutase activity of ternary copper complexes of sulfathiazole and imidazole derivatives. Synthesis and properties of [CuL2(R-Him)2] [HL = 4-amino-N-(thiazol-2-yl)benzenesulfonamide, R-Him = 4-methylimidazole, 4,4-dimethylimidazoline or 1,2-dimethylimidazole]. Crystal structure of [CuL2(4,4-dimethylimidazoline)2]. Inorg Chim Acta 304:170–177

    Article  CAS  Google Scholar 

  • Casimiro Fernandes T, Christofoletti Mazzeo D, Marin-Morales MA (2009) Origin of nuclear and chromosomal alterations derived from the action of an aneugenic agent—trifluralin herbicide. Ecotoxicol Environ Saf 72:1680–1686

    Article  Google Scholar 

  • Chapman D, Buxser S (2002) Effects of membrane partitioning and other physical chemical properties on the apparent potency of “membrane active” compounds evaluated using red blood cell lysis assays. Anal Biochem 303:153–166

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Rao PNP, Knaus EE (2005) Design, synthesis, and biological evaluation of N-acetyl-2-carboxybenzenesulfonamides: a novel class of cyclooxygenase-2 (COX-2) inhibitors. Bioorg Med Chem 13:2459–2468

    Article  CAS  PubMed  Google Scholar 

  • Cowan JA (1997) Inorganic biochemistry: an introduction. Wiley-VCH, USA

    Google Scholar 

  • Domínguez JN, León C, Rodrigues J, Domínguez NG, Gut J, Rosethal PJ (2005) Synthesis and antimalarial activity of sulfonamide chalcone derivatives. Il Farmaco 60:307–311

    Article  PubMed  Google Scholar 

  • Encío I, Morré Dj, Villar R, Gil Mj, Martínez-Merino V (2005) Benzo[b]thiophenesulphonamide 1,1-dioxide derivatives inhibit tNOX activity in a redox state-dependent manner. Br J Cancer 92:690–695

    Article  PubMed  Google Scholar 

  • Feresin G, Tapia A, López S, Zacchino S (2001) Antimicrobial activity of plants used in traditional medicine of San Juan province, Argentine. J Ethnopharmacol 78:103–107

    Article  CAS  PubMed  Google Scholar 

  • Funahashi Y, Sugi NH, Semba T, Yamamoto Y, Hamaoka S, Tsukahara-Tamai N, Ozawa Y, Tsuruoka A, Nara K, Takahashi K, Okabe T, Kamata J, Owa T, Ueda N, Haneda T, Yonaga M, Yoshimatsu K, Wakabayashi T (2002) Sulfonamide derivative, E7820, is a unique angiogenesis inhibitor suppressing an expression of integrin 2 subunit on endothelium. Cancer Res 62:6116–6123

    CAS  PubMed  Google Scholar 

  • Gadad AK, Noolyi MN, Karpoormath RV (2004) Synthesis and anti-tubercular activity of a series of 2-sulfonamido/trifluoromethyl-6-substituted imidazo[2,1-b]-1,3,4-thiadiazole derivatives. Bioorg Med Chem 12:5651–5659

    Article  CAS  PubMed  Google Scholar 

  • García-Raso A, Fiol J, Rigo S, López-López A, Molins E, Espinosa E, Borrás E, Alzuet G, Borrás J, Castiñeiras A (2000) Coordination behaviour of sulfanilamide derivatives: crystal structures of [Hg(sulfamethoxypyridazinato)2], [Cd(sulfadimidinato)2(H2O)]·2H2O and [Zn(sulfamethoxazolato)2-(pyridine)2(H2O)2]. Polyhedron 19:991–1004

    Article  Google Scholar 

  • González-Álvarez M, Alzuet G, Borrás J, del Catillo Agudo L, García-Granda S, Montejo Bernardo JM (2004) Strong protective action of copper(II) N-substituted sulfonamide complexes against reactive oxygen species. J Inorg Biochem 98:189–198

    Article  PubMed  Google Scholar 

  • Jorgensen J, Turnidge J, Washington JA (1999) Antibacterial susceptibility tests: dilution and disk diffusion methods. In: Murray PR, Faller MA, Tenover FC, Baron EJ, Yolken RH (eds) Manual of clinical microbiology, 7th edn. ASM Press, Washington, DC, pp 1526–1543

    Google Scholar 

  • Jurado J, Alejandre-Durán E, Pueyo C (1993) Genetic differences between the standard Ames tester strains TA100 and TA98. Mutagenesis 8:527–532

    Article  CAS  PubMed  Google Scholar 

  • Kesimli B, Topacli A (2001) Infrared studies on Co and Cd complexes of sulfamethoxazole. Spectrochim Acta A 57:1031–1036

    Article  Google Scholar 

  • Lee S, Lee J, Lunde C, Kubo I (1999) In vitro antifungal susceptibilities of candida albicans to polygodial, a sesquiterpene dialdehyde. Planta Med 65:204–208

    Article  CAS  PubMed  Google Scholar 

  • Lever ABP (1984) Inorganic electronic spectroscopy, 2nd edn. Elsevier, The Netherlands

    Google Scholar 

  • Lin Vien D, Colthup NB, Fateley WF, Grasselli JG (1991) Infrared and Raman characteristic frequencies of organic molecules. Academic Press, Inc, Boston

    Google Scholar 

  • Lippard SJ, Berg J (1994) Principles of bioinorganic chemistry. University Science Books, Mill Valley

    Google Scholar 

  • López-Sandoval H, Londoño-Lemos M, Garza-Velasco R, Poblano-Meléndez I, Granada-Macías P, Gracia-Mora I, Barba-Behrens N (2008) Synthesis, structure and biological activities of cobalt(II) and zinc(II) coordination compounds with 2-benzimidazole derivatives. J Inorg Biochem 102:1267–1276

    Article  PubMed  Google Scholar 

  • Lv J, Liu T, Cai S, Wang X, Liu L, Wang Y (2006) Synthesis, structure and biological activity of cobalt(II) and copper(II) complexes of valine-derived Schiff bases. J Inorg Biochem 100:1888–1896

    Article  CAS  PubMed  Google Scholar 

  • Mandell G, Sande M (1981) Quimioterapia de las enfermedades microbianas. In: Goodman A, Gilman L (eds) Las bases farmacológicas de la terapéutica, 6th edn. Ed. Médica Panamericana, Buenos Aires, pp 1087–1105

    Google Scholar 

  • Maron D, Ames B (1983) Revised methods for the Salmonella mutagenicity test. Mutat Res 113:173–215

    CAS  PubMed  Google Scholar 

  • Mishra A, Kaushik N, Verma A, Gupta R (2008) Synthesis, characterization and antibacterial activity of cobalt(III) complexes with pyridine-amide ligands. Eur J Med Chem 43:2189–2196

    Article  CAS  PubMed  Google Scholar 

  • Morais Leme D, Marin-Morales MA (2009) Allium cepa test in environmental monitoring: a review on its application. Mutat Res 682:71–81

    Article  Google Scholar 

  • Mortelmans K, Zeiger E (2000) The Ames Salmonella/microsome mutagenicity assay. Mutat Res 455:29–60

    CAS  PubMed  Google Scholar 

  • Navarro-Martínez M, Cabezas-Herrera J, Rodríguez-López J (2006) Antifolates as antimycotics? Connection between the folic acid cycle and the ergosterol biosynthesis pathway in Candida albicans. Int J Antimicrob Agents 28:560–567

    Article  PubMed  Google Scholar 

  • NCCLS (2002) Method M-38A, 2nd ed. Wayne Ed 22(16):1–27

    Google Scholar 

  • NCCLS, National Committee for Clinical Laboratory Standards (2002) Method M27-A2, 2nd ed. Wayne Ed 22(15):1–29

    Google Scholar 

  • Nieta MJ, Alovero FL, Manzo RH, Mazzieri MR (2005) Benzenesulfonamide analogs of fluoroquinolones. Antibacterial activity and QSAR studies. Eur J Med Chem 40:361–369

    Article  Google Scholar 

  • Nieva Moreno M, Zampini I, Ordoñez R, Jaime G, Vattuone M, Isla MI (2005) Evaluation of the cytotoxicity, genotoxicity, mutagenicity, and antimutagenicity of Propolis from Tucuman. Argent J Agric Food Chem 53:8957–8962

    Article  Google Scholar 

  • Nyquist RA (ed) (2001) Interpreting infrared, Raman, and nuclear magnetic resonance spectra. Academic Press, New York

    Google Scholar 

  • Otter C, Couchman S, Jeffery J, Mann K, Psilldds L, Ward M (1998) Complexes of a new bidentate chelating pyridyl/sulfonamide ligand with copper(II), cobalt(II) and palladium(II): crystal structures and spectroscopic properties. Inorg Chim Acta 278:178–184

    Article  CAS  Google Scholar 

  • Özdemir Ü, Güvenç P, Şahin E, Hamurcu F (2009) Synthesis, characterization and antibacterial activity of new sulfonamide derivatives and their nickel(II), cobalt(II) complexes. Inorg Chim Acta 362:2613–2618

    Article  Google Scholar 

  • Pedregosa JC, Casanova J, Alzuet G, Borrás J, García-Granda S, Díaz MR, Gutierrez-Rodriguez A (1995) Metal complexes of 5-tertbutyloxycarbonylamido-1,3,4-thiadiazole-2-sulfonamide (B-H2ats), a carbonic anhydrase inhibitor. Synthesis and characterization of the copper(II) complex. Crystal structures of B-H2ats and the [Cu(B-ats)(NH3)2]2 dimer complex. Inorg Chim Acta 232:117–124

    Article  CAS  Google Scholar 

  • Pejova B, Isahi A, Najdoski M, Grozdanov I (2001) Fabrication and characterization of nanocrystalline cobalt oxide thin films. Mater Res Bull 36:161–170

    Article  CAS  Google Scholar 

  • Randaccio L, Geremia S, Wuerges J (2007) Crystallography of vitamin B12 proteins. J Organomet Chem 692:1198–1215

    Article  CAS  Google Scholar 

  • Remko M (2010) Molecular structure, pK a, lipophilicity, solubility and absorption of biologically active aromatic and heterocyclic sulfonamides. J Mol Struct: Theochem 944:34–42

    Article  CAS  Google Scholar 

  • Rodríguez-Argüelles MC, Mosquera-Vázquez S, Tourón-Touceda P, Sanmartín-Matalobos J, García-Deibe AM, Belicchi-Ferrari M, Pelosi G, Pelizzi C, Zani F (2007) Complexes of 2-thiophenecarbonyl and isonicotinoyl hydrazones of 3-(N-methyl)isatin. A study of their antimicrobial activity. J Inorg Biochem 101:138–147

    Article  PubMed  Google Scholar 

  • Rodríguez-Argüelles MC, Cao R, García-Deibe AM, Pelizzi C, Sanmartín-Matalobos J, Zani F (2009) Antibacterial and antifungal activity of metal(II) complexes of acylhydrazones of 3-isatin and 3-(N-methyl)isatin. Polyhedron 28:2187–2195

    Article  Google Scholar 

  • Rosenkranz HS (1979) A synergistic effect between cerium nitrate and silver sulphadiazine. Burns 5:278–281

    Article  Google Scholar 

  • Saghatforoush L, Chalabian F, Aminkhani A, Karimnezhad G, Ershad S (2009) Synthesis, spectroscopic characterization and antibacterial activity of new cobalt(II) complexes of unsymmetrical tetradentate (OSN2) Schiff base ligands. Eur J Med Chem 44:4490–4495

    Article  CAS  PubMed  Google Scholar 

  • Semba T, Funahashi Y, Ono N, Yamamoto Y, Sugi NH, Asada M, Yoshimatsu K, Wakabayashi T (2004) An angiogenesis inhibitor E7820 shows broad-spectrum tumor growth inhibition in a xenograft model: possible value of integrin α2 on platelets as a biological marker. Clin Cancer Res 10:1430–1438

    Article  CAS  PubMed  Google Scholar 

  • Sharaby CM (2005) Preparation, characterization and biological activity of Fe(III), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and UO2(II) complexes of new cyclodiphosph(V)azane of sulfaguanidine. Spectrochim Acta A 62:326–334

    Article  Google Scholar 

  • Sławínski J, Gdaniec M (2005) Synthesis, molecular structure, and in vitro antitumor activity of new 4-chloro-2-mercaptobenzenesulfonamide derivatives. Eur J Med Chem 40:377–389

    Article  PubMed  Google Scholar 

  • Smith B (1999) Infrared spectral interpretation. A systematic approach. CRC Press, New York

    Google Scholar 

  • Vehmeyer-Heeman M, Tondu T, Van den Kerckhove E, Boeckx W (2006) Application of cerium nitrate–silver sulphadiazine allows for postponement of excision and grafting. Burns 32:60–63

    Article  CAS  PubMed  Google Scholar 

  • Wassermann D, Schlotterer M, Lebreton F, Levy J, Guelfi MC (1989) Use of topically applied silver sulphadiazine plus cerium nitrate in major burns. Burns 15:257–260

    Article  CAS  PubMed  Google Scholar 

  • Wright LR, Scott EM, Gorman SP (1983) The sensitivity of mycelium, arthrospores and microconidia of Trichophyton mentagrophytes to imidazoles determined by in-vitro tests. J Antimicrob Chemother 12:317–327

    Article  CAS  PubMed  Google Scholar 

  • Yeung CM, Klein LL, Flentge CA, Randolph JT, Zhao C, Sun M, Dekhtyar T, Stoll VS, Kempf Dj (2005) Oximinoarylsulfonamides as potent HIV protease inhibitors. Bioorg Med Chem Lett 15:2275–2278

    Article  CAS  PubMed  Google Scholar 

  • Zeiger E, Anderson B, Haworth S, Lawlor T, Mortelmans K (1988) Salmonella mutagenicity tests: IV Results from the testing of 300 chemicals. J Environ Mol Mutagen 11:1–158

    Article  CAS  Google Scholar 

Download references

Acknowledgments

P.A.M.W. is member of the Research Career CICPBA. M.R. is member of the Research Career of UNR. M.R. acknowledges Prof. S. Zacchino for helpful discussions, Prof. A. M. Atria for elemental analysis and Rosario National University for financial support. AP thanks National Research Council of Argentina (CONICET) for a PhD scholarship and Fundación Prats for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcela Rizzotto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monti, L., Pontoriero, A., Mosconi, N. et al. Synthesis, characterization and antimicrobial properties of a Co(II)-phthalylsulfathiazolate complex. Biometals 23, 1015–1028 (2010). https://doi.org/10.1007/s10534-010-9347-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-010-9347-8

Keywords

Navigation