Skip to main content
Log in

Partitioning soil respiration: quantifying the artifacts of the trenching method

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Total soil respiration (Rt) is a combination of autotrophic (Ra) and heterotrophic respiration (Rh). Root exclusion methods, such as soil trenching, are often utilized to separate these components. This method involves severing the rooting system surrounding a plot to remove the Ra component. However, soil trenching has potential limitations including (1) reduced water uptake in trenched plots that increases soil water content, which is one of the environmental controllers of Rt in many ecosystems, and (2) increased available carbon substrate for Rh caused by recently severed dead roots. We present a methodology that utilizes a bayesian modeling framework to quantify the magnitude of artifacts from a large trenching manipulation experiment. Thus methodology corrects Rh and Ra observations at daily to seasonal time scales. This study finds that the artifacts, due to recently severed roots, persist over a 2 years study period and the artifacts due to altered soil moisture had the greatest impact during drought conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Ra:

Autotrophic respiration

Rh:

Heterotrophic respiration

Rt:

Total soil respiration

RSR:

Recently severed roots

SMT:

Soil moisture and temperature

References

  • Abramoff RZ, Finzi AC (2016) Seasonality and partitioning of root allocation to rhizosphere soils in a midlatitude forest. Ecosphere 7(11):e01547. https://doi.org/10.1002/ecs2.1547

    Article  Google Scholar 

  • Balogh J, Papp M, Pinter K, Foti S, Posta K, Eugster W, Nagy Z (2016) Autotrophic component of soil respiration is repressed by drought more than the heterotrophic one in dry grasslands. Biogeosciences 13(18):5171–5182

    Article  Google Scholar 

  • Bond-Lamberty B, Thomson A (2010) Temperature-associated increases in the global soil respiration record. Nature 464(7288):579–582

    Article  Google Scholar 

  • Borken W, Savage K, Davidson EA, Trumbore SE (2006) Effects of experimental drought on soil respiration and radiocarbon efflux from a temperate forest soil. Glob Chang Biol 12(2):177–193

    Article  Google Scholar 

  • Cheng WX (2009) Rhizosphere priming effect: its functional relationships with microbial turnover, evapotranspiration, and C-N budgets. Soil Biol Biochem 41(9):1795–1801

    Article  Google Scholar 

  • Ciais P, Sabine C, Bala G, Bopp L, et al (2013) Carbon and other biogeochemical cycles. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds.) Climate change: the physical science basis. contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Cisneros-Dozal LM, Trumbore SE, Hanson PJ (2006) Partitioning sources of soil-respired CO(2) and their seasonal variation using a unique radiocarbon tracer. Glob Chang Biol 12(2):194–204

    Article  Google Scholar 

  • Compton JE, Boone RD (2000) Long-term impacts of agriculture on soil carbon and nitrogen in New England forests. Ecology 81(8):2314–2330

    Article  Google Scholar 

  • Comstedt D, Bostrom B, Ekblad A (2011) Autotrophic and heterotrophic soil respiration in a Norway spruce forest: estimating the root decomposition and soil moisture effects in a trenching experiment. Biogeochemistry 104(1–3):121–132

    Article  Google Scholar 

  • Davidson EA, Janssens IA, Luo YQ (2006) On the variability of respiration in terrestrial ecosystems: moving beyond Q(10). Glob Chang Biol 12(2):154–164

    Article  Google Scholar 

  • Davidson EA, Samanta S, Caramori SS, Savage K (2012) The Dual Arrhenius and Michaelis-Menten kinetics model for decomposition of soil organic matter at hourly to seasonal time scales. Glob Chang Biol 18(1):371–384

    Article  Google Scholar 

  • Diaz-Pines E, Schindlbacher A, Pfeffer M, Jandl R, Zechmeister-Boltenstern S, Rubio A (2010) Root trenching: a useful tool to estimate autotrophic soil respiration? A case study in an Austrian mountain forest. Eur J For Res 129(1):101–109

    Article  Google Scholar 

  • Drake JE, Oishi AC, Giasson MA, Oren R, Johnsen KH, Finzi AC (2012) Trenching reduces soil heterotrophic activity in a loblolly pine (Pinus taeda) forest exposed to elevated atmospheric [CO2] and N fertilization. Agric For Meteorol 165:43–52

    Article  Google Scholar 

  • Epron D, Farque L, Lucot E, Badot PM (1999) Soil CO2 efflux in a beech forest: the contribution of root respiration. Ann For Sci 56(4):289–295

    Article  Google Scholar 

  • Epron D, Le Dantec V, Dufrene E, Granier A (2001) Seasonal dynamics of soil carbon dioxide efflux and simulated rhizosphere respiration in a beech forest. Tree Physiol 21(2–3):145–152

    Article  Google Scholar 

  • Fahey TJ, Siccama TG, Driscoll CT, Likens GE, Campbell J, Johnson CE, Battles JJ, Aber JD, Cole JJ, Fisk MC, Groffman PF, Hamburg SP, Holmes RT, Schwarz PA, Yanai RD (2005) The biogeochemistry of carbon at Hubbard Brook. Biogeochemistry 75:109–176

    Article  Google Scholar 

  • Finzi AC, Abramoff RZ, Spiller KS, Brzostek ER, Darby BA, Kramer MA, Phillips RP (2015) Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles. Glob Chang Biol 21(5):2082–2094

    Article  Google Scholar 

  • Gaudinski JB, Trumbore SE, Davidson EA, Zheng SH (2001) Soil carbon cycling in a temperate forest: radiocarbon-based estimates of residence times, sequestration rates and partitioning of fluxes (vol 51, pg 33, 2000). Biogeochemistry 52(1):113–114

    Article  Google Scholar 

  • Gaumont-Guay D, Black TA, Barr AG, Jassal RA, Nesic Z (2008) Biophysical controls on rhizospheric and heterotrophic components of soil respiration in a boreal black spruce stand. Tree Physiol 28(2):161–171

    Article  Google Scholar 

  • Giasson M-A, Ellison MA, Bowden RD, Crill PM, Davidson EA, Drake JE, Frey SD, Hadley JL, Lavine M, Melillo JM, Munger JW, Nadelhoffer KJ, Nicoll L, Ollinger SV, Savage KE, Steudler PA, Tang J, Varner RK, Wofsy SC, Foster DR, Finzi AC (2013) Soil respiration in a northeastern US temperate forest: a 22-year synthesis. Ecosphere 4(11):140. https://doi.org/10.1890/ES13.00183.1

    Article  Google Scholar 

  • Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000) Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry 48(1):115–146

    Article  Google Scholar 

  • Högberg P, Nordgren A, Buchmann N, Taylor AF, Ekblad A, Hogberg MN, Nyberg G, Ottosson-Lofvenius M, Read DJ (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411(6839):789–792

    Article  Google Scholar 

  • Jarosz A, Wiley J (2014) What are the odds? A practical guide to computing and reporting Bayes factors. J Probl Solving 7(1):2

    Google Scholar 

  • Jassal RS, Black TA, Novak MD, Gaumont-Guay D, Nesic Z (2008) Effect of soil water stress on soil respiration and its temperature sensitivity in an 18-year-old temperate Douglas-fir stand. Glob Chang Biol 14(6):1305–1318

    Article  Google Scholar 

  • Lavigne MB, Boutin R, Foster RJ, Goodine G, Bernie PY, Robitaille G (2003) Soil respiration responses to temperature are controlled more by roots than by decomposition in balsam fir ecosystems. Can J For Res 33(9):1744–1753

    Article  Google Scholar 

  • Matamala R, Gonzalez-Meler MA, Jastrow JD, Norby RJ, Schlesinger WH (2003) Impacts of fine root turnover on forest NPP and soil C sequestration potential. Science 302(5649):1385–1387

    Article  Google Scholar 

  • McClaugherty CA, Aber JD, Melillo JM (1984) Decomposition dynamics of fine roots in forested ecosystems. Oikos 42(3):378–386

    Article  Google Scholar 

  • Orwig DA, Plotkin AAB, Davidson EA, Lux H, Savage KE, Ellison AM (2013) Foundation species loss affects vegetation structure more than ecosystem function in a northeastern USA forest. PeerJ 1:e41. https://doi.org/10.7717/peerj.41

    Article  Google Scholar 

  • Phillips RP, Erlitz Y, Bier R, Bernhardt ES (2008) New approach for capturing soluble root exudates in forest soils. Funct Ecol 22(6):990–999. https://doi.org/10.1111/j.1365-2435.2008.01495.x

    Article  Google Scholar 

  • Phillips RP, Finzi AC, Bernhardt ES (2011) Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Ecol Lett 14(2):187–194. https://doi.org/10.1111/j.1461-0248.2010.01570.x

    Article  Google Scholar 

  • Savage KE, Davidson EA (2001) Interannual variation of soil respiration in two New England forests. Global Biogeochem Cycles 15(2):337–350

    Article  Google Scholar 

  • Savage K, Davidson EA, Richardson AD, Hollinger DY (2009) Three scales of temporal resolution from automated soil respiration measurements. Agric For Meteorol 149(11):2012–2021

    Article  Google Scholar 

  • Savage K, Davidson EA, Tang J (2013) Diel patterns of autotrophic and heterotrophic respiration among phenological stages. Glob Chang Biol 19(4):1151–1159

    Article  Google Scholar 

  • Savage K, Phillips R, Davidson E (2014) High temporal frequency measurements of greenhouse gas emissions from soils. Biogeosciences 11(10):2709–2720

    Article  Google Scholar 

  • Schulze ED, Ciais P, Luyssaert S, Schrumpf M, Janssens IA, Thiruchittampalam B, Theloke J, Saurat M, Bringezu S, Lelieveld J, Lohila A, Rebmann C, Jung M, Bastviken D, Abril G, Grassi G, Leip A, Freibauer A, Kutsch W, Don A, Nieschulze J, Börner A, Gash JH, Dolman AJ (2010) The European carbon balance. Part 4: integration of carbon and other trace-gas fluxes. Glob Chang Biol 16:1451–1469

    Article  Google Scholar 

  • Scott-Denton LE, Rosenstiel TN, Monson RK (2006) Differential controls by climate and substrate over the heterotrophic and rhizospheric components of soil respiration. Glob Chang Biol 12(2):205–216

    Article  Google Scholar 

  • Subke JA, Inglima I, Cotrufo MF (2006) Trends and methodological impacts in soil CO2 efflux partitioning: a metaanalytical review. Glob Chang Biol 12(6):921–943

    Article  Google Scholar 

  • Tang JW, Misson L, Gershenson A, Cheng WX, Goldstein AH (2005) Continuous measurements of soil respiration with and without roots in a ponderosa pine plantation in the Sierra Nevada Mountains. Agric For Meteorol 132(3–4):212–227

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the DOE- TES, Award Number DE-SC0006741. All model code in Supplementary Materials S1 and S2 are made available in the GitHub repository https://github.com/Savage149/Trenching-Artifacts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. E. Savage.

Additional information

Responsible Editor: Sasha C. Reed.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10533_2018_472_MOESM1_ESM.zip

S1: two files with the R code (S1_decomp_model_FINAL.R) and jags model code (S1_rootdecomp_jags_FINAL.R) for the bayesian modeling for recently severed roots (RSR) plus a sample data file (S1_rootdecomp.csv). Supplementary material 1 (ZIP 3 kb)

10533_2018_472_MOESM2_ESM.zip

S2_SMT: two files with the R code (S2_Q10andWC_model_FINAL.R) and jags model code (S2_Q10andWC_jags_FINLA.R) for the bayesian modeling for moisture and temperature artifacts plus a sample data file (S2_Fluxdata_example.csv). Supplementary material 2 (ZIP 13 kb)

S3: Graph of pre-trenched and control soil moisture for 2012. Supplementary material 3 (ZIP 186 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savage, K.E., Davidson, E.A., Abramoff, R.Z. et al. Partitioning soil respiration: quantifying the artifacts of the trenching method. Biogeochemistry 140, 53–63 (2018). https://doi.org/10.1007/s10533-018-0472-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-018-0472-8

Keywords

Navigation