Skip to main content
Log in

Spatial variation in CO2 exchange at a northern aapa mire

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract:

We compared the CO2 exchange and its controls in the plant communities of a strongly patterned aapa mire, the Kaamanen fen in northern Finland. Based on a systematic vegetation inventory and an ordination analysis, four plant community types were chosen for the study: Ericales–Pleurozium string tops, Betula–Sphagnum string margins, Trichophorum tussock flarks and Carex–Scorpidium wet flarks. We measured plant community CO2 exchange with a closed chamber technique during the growing season of 2007 and early summer of 2008. Nonlinear regression models were used for simulating the CO2 exchange over the measurement period for different mire components and for the whole mire. The CO2 exchange dynamics distinguished two functional components in the mire: an ombrotrophic component (Ericales–Pleurozium string tops) and a minerotrophic component (other plant community types). Minerotrophic plant communities responded similarly to environmental controls, the most important of these being variation in leaf area and aerobic peat volume (water level). The ombrotrophic component dynamics were more obscure; frost and possibly peat moisture played a role. The minerotrophic communities functioned as effective CO2 sinks in the simulation, while the net CO2 exchange of the ombrotrophic community was close to zero. The smaller NEE of the ombrotrophic community was due to less efficient photosynthesis per unit leaf area in combination with high ecosystem respiration resulting from a large aerobic peat volume. Our study shows that a fen/bog functional dichotomy can also exist within one mire. Wet minerotrophic communities within northern mires can act as effective CO2 sinks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

VGA:

Vascular green area

TWINSPAN:

Two Way INdicator SPecies ANalysis

References

  • Ahti T, Hämet-Ahti L, Jalas J (1968) Vegetation zones and their sections in northwestern Europe. Ann Bot Fenn 5:169–211

    Google Scholar 

  • Alm J, Schulman L, Walden J, Nykänen H, Martikainen PJ, Silvola J (1999) Carbon balance of a boreal bog during a year with an exceptionally dry summer. Ecology 80:161–174

    Article  Google Scholar 

  • Alm J, Shurpali NJ, Tuittila E-S, Laurila T, Maljanen M, Saarnio S, Minkkinen K (2007) Methods for determining emission factors for the use of peat and peatlands—flux measurements and modelling. Boreal Environ Res 12:85–100

    Google Scholar 

  • Aurela M, Tuovinen JP, Laurila T (1998) Carbon dioxide exchange in a subarctic peatland ecosystem in northern Europe measured by the eddy covariance technique. J Geophys Res D: Atmos 103:11289–11301

    Article  Google Scholar 

  • Aurela M, Laurila T, Tuovinen JP (2001) Seasonal CO2 balances of a subarctic mire. J Geophys Res D: Atmos 106:1623–1637

    Article  Google Scholar 

  • Aurela M, Laurila T, Tuovinen JP (2002) Annual CO2 balance of a subarctic fen in northern Europe: importance of the wintertime efflux. J Geophys Res D: Atmos 107:4607

    Article  Google Scholar 

  • Aurela M, Laurila T, Tuovinen JP (2004) The timing of snow melt controls the annual CO2 balance in a subarctic fen. Geophys Res Lett 31:L16119

    Article  Google Scholar 

  • Bäckstrand K, Crill PM, Mastepanov M, Christensen TR, Bastviken D (2008) Total hydrocarbon flux dynamics at a subarctic mire in northern Sweden. J Geophys Res G: Biogeosci 113:G03026

    Article  Google Scholar 

  • Baldocchi DD (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biol 9:479–492

    Article  Google Scholar 

  • Bekku YST, Nakatsubo A, Kume M, Adachi M, Koizumi H (2003) Effect of warming on the temperature dependence of soil respiration rate in arctic, temperate and tropical soils. Appl Soil Ecol 22:205–210

    Article  Google Scholar 

  • Botch MS, Masing VV (1983) Mire ecosystems in the USSR. In: Gore AJP (ed) Ecosystems of the World 4B. Mires: swamp, bog, fen and moor. Elsevier, Amsterdam

    Google Scholar 

  • Botch MS, Kobak KI, Vinson TS, Kolchugina TP (1995) Carbon pools and accumulation in peatlands of the former Soviet-Union. Global Biogeochem Cycles 9:37–46

    Article  Google Scholar 

  • Bubier JL, Crill PM, Moore TR, Savage K, Varner RK (1998) Seasonal patterns and controls on net ecosystem CO2 exchange in a boreal peatland complex. Global Biogeochem Cycles 12:703–714

    Article  Google Scholar 

  • Bubier JL, Frolking S, Crill PM, Linder E (1999) Net ecosystem productivity and its uncertainty in a diverse boreal peatland. J Geophys Res D: Atmos 104:27683–27692

    Article  Google Scholar 

  • Bubier JL, Bhatia G, Moore TR, Roulet NT, Lafleur PM (2003) Spatial and temporal variability in growing-season net ecosystem carbon dioxide exchange at a large peatland in Ontario, Canada. Ecosystems 6:353–367

    Google Scholar 

  • Burrows EH, Bubier JL, Mosedale A, Cobb GW, Crill PM (2005) Net ecosystem exchange of carbon dioxide in a temperate poor fen: a comparison of automated and manual chamber techniques. Biogeochemistry 76:21–45

    Article  Google Scholar 

  • Chapin FS, Shaver GR (1989) Differences in growth and nutrient use among arctic plant-growth forms. Funct Ecol 3:73–80

    Article  Google Scholar 

  • Chapin FS, Johnson DA, Mckendrick JD (1980) Seasonal movement of nutrients in plants of differing growth form in an Alaskan tundra ecosystem—implications for herbivory. J Ecol 68:189–209

    Article  Google Scholar 

  • Dilks TJ K, Proctor MCF (1979) Photosynthesis, respiration and water content in bryophytes. New Phytol 82:97–114

    Article  Google Scholar 

  • Dorrepaal E (2007) Are plant growth-form based classifications useful in predicting northern ecosystem carbon cycling feedbacks to climate change? J Ecol 95:1167–1180

    Article  Google Scholar 

  • Eurola S, Huttunen A, Kukko-oja K (1995) Suokasvillisuusopas. Oulun yliopisto, Oulangan biologinen asema, Oulu

  • Frolking S, Roulet N T, Moore T R, Lafleur P M, Bubier J L, Crill P M (2002) Modeling the seasonal to annual carbon balance of Mer Bleue bog, Ontario, Canada. Global Biogeochem Cycles 16. doi:10.1029/2001GB1457

  • Gorham E (1991) Northern peatlands—role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–195

    Article  Google Scholar 

  • Halsey LA, Vitt DH, Zoltai SC (1995) Disequilibrium response of permafrost in boreal continental western Canada to climate-change. Clim Change 30:57–73

    Article  Google Scholar 

  • Harris GC, Antoine V, Chan M, Nevidomskyte D, Koniger M (2006) Seasonal changes in photosynthesis, protein composition and mineral content in Rhododendron leaves. Plant Sci 170:314–325

    Article  Google Scholar 

  • Heikkinen JEP, Maijanen M, Aurela M, Hargreaves KJ, Martikainen PJ (2002) Carbon dioxide and methane dynamics in a sub-Arctic peatland in northern Finland. Polar Res 21:49–62

    Article  Google Scholar 

  • Hill MO (1979) TWINSPAN—A FORTRAN program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes. Ithaca, NY: Cornell University, Department of Ecology and Systematics

    Google Scholar 

  • Hill MO, Šmilauer P (2005) TWINSPAN for Windows, version 2.3. Centre for Ecology and Hydrology & University of South Bohemia, Huntingdon & Ceske Budejovice

  • Illeris L, Christensen TR, Mastepanov M (2004) Moisture effects on temperature sensitivity of CO2 exchange in a subarctic heath ecosystem. Biogeochemistry 70:315–330

    Article  Google Scholar 

  • IPCC (International Panel on Climate Change) (2007) Climate Change 2007: fourth assessment report. Valencia, Espanja: IPCC

  • Karlsson PS (1985) Photosynthetic characteristics and leaf carbon economy of a deciduous and an evergreen dwarf shrub—Vaccinium-Uliginosum L and V-Vitis-Idaea L. Holarct Ecol 8:9–17

    Google Scholar 

  • Kingsbury CM, Moore TR (1987) The freeze-thaw cycle of a sub-Arctic fen, northern Quebec, Canada. Arct Alp Res 19:289–295

    Article  Google Scholar 

  • Klinger LF, Short SK (1996) Succession in the Hudson Bay lowland, northern Ontario, Canada. Arct Alp Res 28:172–183

    Article  Google Scholar 

  • Lafleur PM, Moore TR, Roulet NT, Frolking S (2005) Ecosystem respiration in a cool temperate bog depends on peat temperature but not water table. Ecosystems 8:619–629

    Article  Google Scholar 

  • Laine A, Sottocornola M, Kiely G, Byrne KA, Wilson D, Tuittila E-S (2006) Estimating net ecosystem exchange in a patterned ecosystem: example from a blanket bog. Agric For Meteorol 138:231–243

    Article  Google Scholar 

  • Laine A, Byrne KA, Kiely G, Tuittila ES (2007) Patterns in vegetation and CO2 dynamics along a water level gradient in a lowland blanket bog. Ecosystems 10:890–905

    Article  Google Scholar 

  • Laine A, Riutta T, Juutinen S, Väliranta M, Tuittila E-S (2009) Acknowledging the spatial heterogeneity in modeling/reconstructing carbon dioxide exchange in a northern aapa mire. Ecol Modell 220:2646–2655

    Article  Google Scholar 

  • Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:545–556

    Article  Google Scholar 

  • Leppälä M, Kukko-Oja K, Laine J, Tuittila E-S (2008) Seasonal dynamics of CO2 exchange during primary succession of boreal mires as controlled by phenology of plants. Ecoscience 15:460–471

    Article  Google Scholar 

  • Leps J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lloyd J, Taylor JA (1994) On the temperature-dependence of soil respiration. Funct Ecol 8:315–323

    Article  Google Scholar 

  • Lundell R, Saarinen T, Åstrom H, Hänninen H (2008) The boreal dwarf shrub Vaccinium vitis-idaea retains its capacity for photosynthesis through the winter. Botany-Botanique 86:491–500

    Article  Google Scholar 

  • Moore TR (1989) Plant-production, decomposition, and carbon efflux in a subarctic patterned fen. Arct Alp Res 21:156–162

    Article  Google Scholar 

  • Moore TR, Lafleur PM, Poon DMI, Heumann BW, Seaquist JW, Roulet NT (2006) Spring photosynthesis in a cool temperate bog. Global Change Biol 12:2323–2335

    Article  Google Scholar 

  • Nykänen H, Heikkinen JEP, Pirinen L, Tiilikainen K, Martikainen PJ (2003) Annual CO2 exchange and CH4 fluxes on a subarctic palsa mire during climatically different years. Global Biogeochem Cycles 17:1018

    Article  Google Scholar 

  • Oechel WC, Vourlitis GL, Hastings SJ, Bochkarev SA (1995) Change in arctic CO2 flux over 2 decades—effects of climate-change at Barrow, Alaska. Ecol Appl 5:846–855

    Article  Google Scholar 

  • Öquist G, Huner NPA (2003) Photosynthesis of overwintering evergreen plants. Annu Rev Plant Biol 54:329–355

    Article  Google Scholar 

  • Riutta T, Laine J, Tuittila ES (2007a) Sensitivity of CO2 exchange of fen ecosystem components to water level variation. Ecosystems 10:718–733

    Article  Google Scholar 

  • Riutta T, Laine J, Aurela M, Rinne J, Vesala T, Laurila T, Haapanala S, Pihlatie M, Tuittila E-S (2007b) Spatial variation in plant community functions regulates carbon gas dynamics in a boreal fen ecosystem. Tellus 59B:838–852

    Google Scholar 

  • Ruuhijärvi R (1983) The Finnish mire types and their regional distribution. In: Gore AJP (ed) Ecosystems of the World 4B. Mires: swamp, bog, fen and moor. Regional studies. Elsevier, Amsterdam

    Google Scholar 

  • Rydin H, Jeglum J (2006) The biology of peatlands. Oxford University Press, Oxford

    Book  Google Scholar 

  • Shurpali NJ, Verma SB, Kim J, Arkebauer TJ (1995) Carbon-dioxide exchange in a peatland ecosystem. J Geophys Res D: Atmos 100:14319–14326

    Article  Google Scholar 

  • Silvola J, Alm J, Ahlholm U, Nykänen H, Martikainen PJ (1996) CO2 fluxes from peat in boreal mires under varying temperature and moisture conditions. J Ecol 84:219–228

    Article  Google Scholar 

  • Sjögersten S, van der Wal R, Woodin SJ (2006) Small-scale hydrological variation determines landscape CO2 fluxes in the high Arctic. Biogeochemistry 80:205–216

    Article  Google Scholar 

  • Suding KN, Goldstein LJ (2008) Testing the Holy Grail framework: using functional traits to predict ecosystem change. New Phytol 180:559–562

    Article  Google Scholar 

  • ter Braak CJF, Šmilauer P (2002) CANOCO Reference manual and CanoDraw for Windows User’s guide: software for Canonical Community Ordination, (version 4.5), Microcomputer Power, Ithaca, 500 pp

  • Tsuyuzaki S, Sawada Y, Kushida K, Fukuda M (2008) A preliminary report on the vegetation zonation of palsas in the Arctic National Wildlife Refuge, northern Alaska, USA. Ecol Res 23:787–793

    Article  Google Scholar 

  • Tuittila E-S, Vasander H, Laine J (2004) Sensitivity of C sequestration in reintroduced sphagnum to water-level variation in a cutaway peatland. Restor Ecol 12:483–493

    Article  Google Scholar 

  • Tuittila E-S, Väliranta M, Laine J, Korhola A (2007) Quantifying patterns and controls of mire vegetation succession in a southern boreal bog in Finland using partial ordinations. J Veg Sci 18:891–902

    Article  Google Scholar 

  • Turetsky MR, Wieder RK, Vitt DH, Evans RJ, Scott KD (2007) The disappearance of relict permafrost in boreal north America: effects on peatland carbon storage and fluxes. Global Change Biol 13:1922–1934

    Article  Google Scholar 

  • Waddington JM, Roulet NT (2000) Carbon balance of a boreal patterned peatland. Global Change Biol 6:87–97

    Article  Google Scholar 

  • Ward SE, Bardgett RD, McNamara NP, Ostle NJ (2009) Plant functional group identity influences short-term peatland ecosystem carbon flux: evidence from a plant removal experiment. Funct Ecol 23:454–462

    Article  Google Scholar 

  • Williams M, Street LE, van Wijk MT, Shaver GR (2006) Identifying differences in carbon exchange among arctic ecosystem types. Ecosystems 9:288–304

    Article  Google Scholar 

  • Williams M, Richardson AD, Reichstein M, Stoy PC, Peylin P, Verbeeck H, Carvalhais N, Jung M, Hollinger DY, Kattge J, Leuning R, Luo Y, Tomelleri E, Trudinger CM, Wang Y (2009) Improving land surface models with FLUXNET data. Biogeosciences 6:1341–1359

    Article  Google Scholar 

  • Wilson D, Alm J, Riutta T, Laine J, Byrne KA (2007) A high resolution green area index for modelling the seasonal dynamics of CO2 exchange in peatland vascular plant communities. Plant Ecol 190:37–51

    Article  Google Scholar 

  • Zoltai SC, Pollet FC (1983) Wetlands in Canada: their classification, distribution and use. In: Gore AJP (ed) Ecosystems of the World 4B. Mires: swamp, bog, fen and moor. Elsevier, Amsterdam, pp 245–268

Download references

Acknowledgements

We thank Antti Miettinen and Sanna Ehonen for assistance in the field and Kauko Pistemaa for technical support. The help of Sari Juutinen in realizing the experimental design is highly appreciated. Financial support to E.-S. Tuittila from the Academy of Finland (project code 118493) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liisa Maanavilja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maanavilja, L., Riutta, T., Aurela, M. et al. Spatial variation in CO2 exchange at a northern aapa mire. Biogeochemistry 104, 325–345 (2011). https://doi.org/10.1007/s10533-010-9505-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-010-9505-7

Keywords

Navigation