Skip to main content
Log in

Small-scale hydrological variation determines landscape CO2 fluxes in the high Arctic

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

We explored the influence of small-scale spatial variation in soil moisture on CO2 fluxes in the high Arctic. Of five sites forming a hydrological gradient, CO2 was emitted from the three driest sites and only the wettest site was a net sink of CO2. Soil moisture was a good predictor of net ecosystem exchange (NEE). Higher gross ecosystem photosynthesis (GEP) was linked to higher bryophyte biomass and activity in response to the moisture conditions. Ecosystem respiration (R e) rates increased with soil moisture until the soil became anaerobic and then R e decreased. At well-drained sites R e was driven by GEP, suggesting substrate and moisture limitation of soil respiration. We propose that spatial variability in soil moisture is a primary driver of NEE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Billings WD, Kuken JO, Mortensen DA, Peterson KM (1982) Arctic Tundra: a source or sink for atmospheric carbon dioxide in a changing environment? Oecologia 53:7–11

    Article  Google Scholar 

  • Bliss LC, Matveyeva NV (1992) Circumpolar arctic vegetation. In: Chapin FS, III, Jefferies RL, Reynolds JF, Shaver GR, Svoboda J (eds) Arctic ecosystems in a changing climate: an ecophysiological perspective. Academic Press, New York, USA, pp 59–89

    Google Scholar 

  • Cheng WX, Virginia PA, Oberbauer SF, Gillespie CT, Reynolds JF, Tenhunen JD (1998) Soil nitrogen, microbial biomass, and respiration along an arctic toposequence. Soil Sci Soc Am J 62:654–662

    Article  Google Scholar 

  • Christensen TR, Michelsen A, Jonasson S, Schmidt IK (1997) Carbon dioxide and methane exchange of a subarctic heath in response to climate change related environmental manipulations. Oikos 79:34–44

    Article  Google Scholar 

  • Christensen TR, Jonasson S, Callaghan TV, Havstrom M, Livens FR (1999) Carbon cycling and methane exchange in Eurasian tundra ecosystems. Ambio 28:239–244

    Google Scholar 

  • Christensen TR, Friborg T, Sommerkorn M, Kaplan J, Illeris L, Soegaard H, Nordstroem C, Jonasson S (2000) Trace gas exchange in a high-arctic valley 1. Variation in CO2 and CH4 flux between tundra vegetation types. Global Biogeochem Cycles 14:701–713

    Article  Google Scholar 

  • Fan SM, Wofsy SC, Bakwin PS, Jacob DJ (1992) Micrometerological measurements of CH4 and CO2 exchange between the atmosphere and subarctic tundra. J Geophys Res 97:D15, 16.627–16.643

    Google Scholar 

  • Fang C, Moncrieff JB (1999) A model for soil CO2 production and transport 1: model development. Agric For Meteorol 95:225–236

    Article  Google Scholar 

  • Giblin AE, Nadlehoffer KJ, Shaver GR, Laundre JA and McKerrow AJ (1991) Biogeochemical diversity along a riverside toposequence in Arctic Alaska. Ecol Monogr 61:415–435

    Article  Google Scholar 

  • Gold WB, Bliss LC (1995) Water limitation and plant community development in a polar desert. Ecology 76:1558–1568

    Article  Google Scholar 

  • Heikkinen JEP, Elsakov V, Martikainen PJ (2002) Carbon dioxide and methane dynamics and annual carbon balance in tundra wetland in NE Europe, Russia. Global Biogeochem Cycles 16(4):1115, doi:10.1029/2002GB001930

    Article  Google Scholar 

  • Hobbie SH and Chapin FS, III (1998). The response of tundra plant biomass, aboveground production, nitrogen, and CO2 flux to experimental warming. Ecology 79:1526–1544

    Article  Google Scholar 

  • Illeris L, Michelsen A, Jonasson S (2003) Soil plus root respiration and microbial biomass following water, nitrogen, and phosphorus application at a high arctic semi desert. Biogeochemistry 65:15–29

    Article  Google Scholar 

  • Illeris L, Christensen TR, Mastepanov M (2004) Moisture effects on temperature sensitivity of CO2 exchange in a subarctic heath ecosystem. Biogeochemistry 70:317–332

    Article  Google Scholar 

  • Johnson LC, Shaver GR, Cades DH, Rastetter E, Nadlehoffer K, Giblin A, Laundre J, Stanley A (2000). Plant Carbon–nutrient interactions control CO2 exchange in Alaskan wet tundra ecosystems. Ecology 81:453–469

    Article  Google Scholar 

  • Jones C, McConnell C, Coleman K, Cox P, Falloon P, Jenkinson D, Powlson D (2005) Global climate change and soil carbon stocks; predictions from two contrasting models for the turnover of organic carbon in soil. Global Change Biol 11: 154–166, doi: 10.1111/j.1365-2486.2004.00885

    Google Scholar 

  • Jones MH, Fahnestock JT, Walker DA, Walker MD, Welker JM (1998) Carbon dioxide fluxes in moist and dry arctic tundra during the snow-free season: responses to increases in summer temperature and winter snow accumulation. Arctic Alpine Res 30:373–380

    Article  Google Scholar 

  • Kirschbaum MUF (1995) The temperature-Dependence of soil organic-matter decomposition, and the effect of global warming on soil organic-C storage. Soil Biology & Biochemistry 27: 753–760

    Google Scholar 

  • Latter PM, Howson G, Howard DM, Scott WA (1998) Long-term study of litter decomposition on a Pennine peat bog: which regression? Oecologia 113:94–103

    Article  Google Scholar 

  • Lloyd CR (2001) The measurement and modelling of the carbon dioxide exchange at a high Arctic site in Svalbard. Global Change Biol 7:405–426

    Article  Google Scholar 

  • Littell RC, Milliken GA, Stroup WW, Wolfinger RD (1996) SAS® system for mixed models. SAS Institute Inc., Cary, NC

  • Longton RE (1997) The role of bryophytes and lichens in polar ecosystems. In: Woodin SJ, Marquiss M (eds) Ecology of Arctic environments. British Ecological Society nr 13, pp 69–96

  • McFadden JP, Eugster W, Chapin FS, III, (2003) A regional study on water vapor and CO2 exchange in arctic tundra. Ecology 84:2762–2776

    Google Scholar 

  • McGuire AD, Melillo JM, Kicklighter DW, Joyce LA (1995) Equilibrium responses of soil carbon to climate change: empirical and processed-based estimates. J Biogeogr 22:785–796

    Article  Google Scholar 

  • Muc M, Freedman B, Svoboda J (1989) Vascular plant-communities of a polar oasis at Alexandra fiord (79-degrees-n), Ellesmere Island, Canada. Can J Bot 67:1126–1136

    Google Scholar 

  • Muraoka H, Uchida M, Mishio M, Nakatsubo T, Kanda H, Koizumi H (2002) Leaf photosynthetic characteristics and net primary production of the polar willow (Salix polaris) in a high arctic polar semi-desert, Ny-Alesund, Svalbard. Can J Bot 80:1193–1202

    Article  Google Scholar 

  • Oechel WC, Collins NJ (1976) Comparative CO2 exchange in mosses from two tundra habitats at Barrow, Alaska. Can J␣Bot 54:1355–1369

    Article  Google Scholar 

  • Oechel WC, Billings WD (1992) Effects of global change on the carbon balance of arctic plants and ecosystems. In: Chapin FS, III, Jefferies RL, Reynolds JF, Shaver GR, Svoboda J (eds), Arctic ecosystems in a changing climate: an ecophysiological perspective. Academic Press, New York, USA, pp 139–167

    Google Scholar 

  • Oechel WC, Cook AC, Hastings SJ, Vourlitis GL (1997) Effects of CO2 and climate change on arctic ecosystems. In: Woodin SJ, Maquiss M (eds) Ecology of Arctic environments. The British Ecological Society nr 13, pp␣255–274

  • Ostendorf B (1996) Modeling the influence of hydrological processes on spatial and temporal patterns of CO2 soil efflux from an arctic tundra catchment. Arctic Alpine Res 28:318–327

    Article  Google Scholar 

  • Parsons AN, Welker JM, Wookey PA, Press MC, Callaghan TV, Lee JL (1994) Growth responses of four sub-arctic dwarf shrubs species to simulated climate change. J Ecol 82:307–318

    Article  Google Scholar 

  • Post WM, Emanuel WR, Zinke PJ, Stangenberger AG (1982) Soil carbon pools and world life zones. Nature 298:156–159

    Article  Google Scholar 

  • Potter JA, Press MC, Callaghan TV, Lee JA (1995) Growth responses of Polytricum commune and Hylocomium splendens to simulated environmental change in the sub-arctic. New Phytol 131:533–541

    Article  Google Scholar 

  • Prentice IC, Farquhar GD, Fasham MJR, Goulden ML, Heimann M, Jaramillo VJ, Kheshgi HS, Le Quéré C, Scholes RJ, Wallace DWR (2001) The carbon cycle and atmospheric carbon dioxide. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001. The scientific basis. The intergovernmental panel on climate change

  • Robinson CH, Wookey PA, Lee JA, Callaghan TV, Press MC (1998) Plant community responses to simulated environmental change at a high arctic polar semi-desert. Ecology 79:856–866

    Article  Google Scholar 

  • Rosswall T, Veum AK, Kärenlampi L (1975) Plant litter decomposition at Fennoscandian tundra sites. In: Wielgolaski FE (ed) Fennoscandian Tundra ecosystems, Part 1, plants and microorganisms. Springer-Verlag, Berlin, pp 268–278

    Google Scholar 

  • Rustad LE, Cambell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, Cornelissen JHC, Gurevitch GCTE-NEWS (2001) A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–562

    Article  Google Scholar 

  • Shaver GR, Johnson LC, Cades DH, Murray G, Laundre JA, Rastetter EB, Nadelhoffer KJ, Giblin AE (1998) Biomass and CO2 flux in wet sedge tundras: response to nutrients, temperature, and light. Ecol Monogr 68:75–97

    Article  Google Scholar 

  • Sjögersten S, Wookey PA (2002) Climatic and resource quality controls on soil respiration across the forest-tundra ecotone in Swedish Lapland. Soil Biol Biochem 34:1633–1646

    Article  Google Scholar 

  • Sjögersten S, Wookey PA (2004) Decomposition of mountain birch leaf litter at the forest-tundra ecotone in the Fennoscandian mountains in relation to climate and soil conditions. Plant and Soil 262:215–227

    Google Scholar 

  • Soegaard H, Nordstroem C, Fribord T, Hansen BU, Christensen TR, Bay C (2000) Trace gas exchange in a high arctic valley 3. Integrating and scaling CO2 fluxes from canopy to landscape using flux data, footprint modeling, and remote sensing. Global Biogeochem cycles 14:725–744

    Article  Google Scholar 

  • Sommerkorn M, Bölter M, Kappen L (1999) Carbon dioxide fluxes of soils and mosses in wet tundra of Taimyr Peninsula: controlling factors and contribution to net system fluxes. Polar Res 18:253–260

    Article  Google Scholar 

  • Svensson BH, Christensen TR, Johansson E, Öquist M (1999) Interdecadal changes in CO2 and CH4 fluxes of a subarctic mire: Stordalen revisited after 20 years. Oikos 85:22–30

    Article  Google Scholar 

  • Uchida M, Muraoka H, Nakatsubo T, Bekku Y, Ueno T, Kanda H, Koizumi H (2002) Net photosynthesis, respiration, and production of the moss Sanionia uncinata on a glacier foreland in the high Arctic, Ny-Álesund, Svalbard. Arctic, Antarctic, Alpine Res 34:287–292

    Article  Google Scholar 

  • van der Wal R, Pearce ISK, Brooker RW (2005) Mosses and the struggle for light in a nitrogen-polluted world. Oecologia 142:159–168

    Article  Google Scholar 

  • Vourlitis GL, Oechel WC (1997) Landscape-scale CO2, H2O vapor and energy flux of moist-wet coastal tundra ecosystems over two growing seasons. J Ecol 85:575–590

    Article  Google Scholar 

  • Welker JM, Fahnestock JT, Henry G, O’Dea KW, Chimner RA (2004) CO2 exchange in three Canadian High Arctic ecosystems: response to long-term experimental warming.␣Global Change Biol 10:1981–1995, doi:10.1111/j.1365–2486.2004.00857.x

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the European Commission Framework 5 grant no: EVK2-CT-2002–00145 (FRAGILE). We are grateful to the University Centre on Svalbard (UNIS) for logistical support. We also thank Jani Mannikko, Katrin Sjögersten and Richard Ubels for fieldwork assistance, Ad Huiskes for chemical analysis of soil C and N, and Steve Palmer for providing critical statistical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofie Sjögersten.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sjögersten, S., van der Wal, R. & Woodin, S.J. Small-scale hydrological variation determines landscape CO2 fluxes in the high Arctic. Biogeochemistry 80, 205–216 (2006). https://doi.org/10.1007/s10533-006-9018-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-006-9018-6

Keywords

Navigation