Skip to main content
Log in

Porewater nitrate profiles in sandy sediments hosting submarine groundwater discharge described by an advection–dispersion-reaction model

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

In order to separate the effects of reaction from those of transport on vertical porewater concentration profiles of nitrate at an intertidal groundwater seepage site (Ria Formosa, Portugal), a free-boundary solution of an Advection–Dispersion-Reaction (ADR) model was used to describe the shape of NO3 concentration profiles collected in situ. The model includes three sequential reaction layers, postulated with basis on the local distribution of the benthic organic C:N ratio and major identifiable changes in concentration gradients with depth. The advective nature of the system was used to propose a mass balance simplification to the constitutive equations permitting a free-boundary solution, which in turn allowed prediction of sediment–water fluxes of NO3 . Sensitivity analysis confirmed that in similarly advective-dominated environments, both the porewater concentration distribution and the interfacial fluxes are strongly dependant on seepage rate and benthic reactivity. The model fitted the measured profiles with high correlation (usually higher than 90%), and model-derived sediment–water NO3 fluxes were in good agreement to fluxes measured in situ with Lee-type seepage meters (0.9948 slope, R2 = 0.8672, n = 8). Nitrate oxidation and reduction rates extracted from model fits to the data (10−2–100 mmol m−2 h−1) agreed with literature values. Because dispersive effects are not included in direct mass balances based on the porewater concentrations, the model presented here increases the accuracy of apparent reaction rate estimates and geochemical zonation at Submarine Groundwater Discharge (SGD) sites. The results establish the importance of sandy sediments as reactive interfaces, able to modulate mass transfer of continental-derived contaminants into coastal ecosystems. We suggest that tools such as the one described here might be used to advantage in preparing further experimental studies to elucidate how benthic reactivity affects nitrate distribution and fluxes in sediments affected by SGD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

z :

Depth (L)

\( \hat{C}(z) \) :

Concentration of solute per sediment volume (M L−3)

C 0 :

Concentration of solute per sed. vol. at the upper interface (M L−3)

C aq :

Concentration of solute per sed. vol. at the lower interface (M L−3)

D molec :

Molecular diffusion in water (L2 T−1)

D if :

Molecular diffusion in sediment (L2 T−1)

D isp :

Mechanical dispersion (L2 T−1)

D ef :

Efective dispersion (L2 T−1)

v :

Advective velocity (L T−1)

K n :

Nitrification rate (M L−3 T−1)

K d :

Nitrate reduction rate (T−1)

L x :

Layer depth limit (L)

P e :

Peclet number

D a1 :

Damköhler number for nitrification

D a2 :

Damköhler number for nitrate reduction

J :

Flux per area of total sediment (M L−2 T−1)

φ :

Porosity

θ :

Tortuosity

References

  • Andrade C, Freitas MC, Moreno J, Craveiro SC (2004) Stratigraphical evidence of Late Holocene barrier breaching and extreme storms in lagoonal sediments of Ria Formosa, Algarve, Portugal. Mar Geol 210(1–4):339–362. doi:10.1016/j.margeo.2004.05.016

    Article  Google Scholar 

  • Bao-dong W, Brockmann U (2005) On the deduction of equations for the determination of anthropogenic influence for assessment of estuarine trophic status. Letter to the editor. Ecol Model 185(2–4):545–548. doi:10.1016/j.ecolmodel.2004.12.002

    Article  Google Scholar 

  • Berg P, Risgaard-Petersen N, Rysgaard S (1998) Interpretation of measured concentration profiles in sediment pore water. Limnol Oceanogr 437(7):1500–1510

    Article  Google Scholar 

  • Berner RA (1980) Early diagenesis: a theoretical approach. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Bijeljic B, Blunt MJ (2006) Pore-scale modeling and continuous time random walk analysis of dispersion in porous media. Water Resour Res 42:W01202. doi:10.1029/2005WR004578

    Article  Google Scholar 

  • Boudreau BP (1997) Diagenetic models and their implementation. Springer-Verlag, New York

    Google Scholar 

  • Boudreau BP, Huettel M, Forster S, Jahnke RA, McLachlan A, Middelburg JJ, Nielsen P, Sansone F, Taghon G, Van Raaphorst W, Webster I, Weslawski JM, Wiberg P, Sundby B (2001) Permeable marine sediments: overturning an old paradigm. EOS 82(11):135–136

    Google Scholar 

  • Bowen JL, Kroeger KD, Tomasky G, Pabich WJ, Cole ML, Carmichael RH, Valiela I (2007) A review of land–sea coupling by groundwater discharge of nitrogen to New England estuaries: Mechanisms and effects. Appl Geochem 22(1):175–191. doi:10.1016/j.apgeochem.2006.09.002

    Article  Google Scholar 

  • Brandes JA, Devol AH, Deutsch C (2007) New developments in the marine nitrogen cycle. Chem Rev 107(1):577–589. doi:10.1021/cr050377t

    Article  Google Scholar 

  • Burnett W, Bokuniewicz H, Huettel M, Moore W, Taniguchi M (2003) Groundwater and pore water inputs to the coastal zone. Biogeochemistry 66(1):3–33. doi:10.1023/B:BIOG.0000006066.21240.53

    Article  Google Scholar 

  • Burnett WC, Aggarwal PK, Aureli A, Bokuniewicz H, Cable JE, Charette MA, Kontar E, Krupa S, Kulkarni KM, Loveless A, Moore WS, Oberdorfer JA, Oliveira J, Ozyurt N, Povinec P, Privitera AMG, Rajar R, Ramessur RT, Scholten J, Stieglitz T, Taniguchi M, Turner JV (2006) Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Sci Total Environ 367(2–3):498–543. doi:10.1016/j.scitotenv.2006.05.009 (Review)

    Google Scholar 

  • Cable JE, Burnett WC, Chanton JP, Corbett DR, Cable PH (1997) Field evaluation of seepage meters in the coastal marine environment. Estuar Coast Shelf Sci 45(3):367–375. doi:10.1006/ecss.1996.0191

    Article  Google Scholar 

  • Cappuyns V, Swennen R, Devivier A (2004) Influence of ripening on pHstat leaching behaviour of heavy metals from dredged sediments. J Environ Monit 6(9):774–781. doi:10.1039/b406672c

    Article  Google Scholar 

  • Carleton JN (2002) Damköhler number distributions and constituent removal in treatment wetlands. Ecol Eng 19(4):233–248. doi:10.1016/S0925-8574(02)00094-0

    Article  Google Scholar 

  • DeSimone LA, Howes BL (1996) Denitrification and nitrogen transport in a coastal aquifer receiving wastewater discharge. Environ Sci Technol 30(4):1152–1162. doi:10.1021/es950366p

    Article  Google Scholar 

  • Dollhopf SL, Hyun J, Smith AC, Adams HJ, O’Brien S, Kostka JE (2005) Quantification of ammonia-oxidizing bacteria and factors controlling nitrification in salt marsh sediments. Appl Environ Microbiol 71(1):240–246. doi:10.1128/AEM.71.1.240-246.2005

    Article  Google Scholar 

  • Dullien F (1992) Porous media-fluid transport and pore structure. Academic Press Inc., San Diego, p 574

    Google Scholar 

  • Falter L, Sansone FL (2000) Hydraylic control of pore water geochemistry within the oxic-suboxic zone of a permeable sediment. Limnol Oceanogr 45(3):550–557

    Article  Google Scholar 

  • Ferreira JG, Simas T, Nobre A, Silva MC, Shifferegger K, Lencart-Silva J (2003) Identification of sensitive areas and vulnerable zones in transitional and coastal Portuguese systems—application of the United States National Estuarine Eutrophication Assessment to the Minho, Lima, Douro, Ria de Aveiro, Mondego, Tagus, Sado, Mira, Ria Formosa and Guadiana systems. INAG and IMAR

  • Gran V, Pitkänen H (1999) Denitrification in estuarine sediments in the eastern Gulf of Finland, Baltic Sea. Hydrobiologia 393:107–115. doi:10.1023/A:1003530907516

    Article  Google Scholar 

  • Hamersley MR, Howes BL (2005) Evaluation of the N2 flux approach for measuring sediment denitrification. Estuar Coast Shelf Sci 62(4):711–723. doi:10.1016/j.ecss.2004.10.008

    Article  Google Scholar 

  • Herbert RA (1999) Nitrogen cycling in coastal marine sediments. FEMS Microbiol Rev 23(5):563–590. doi:10.1016/S0168-6445(99)00022-4

    Article  Google Scholar 

  • Horn DP (2002) Beach groundwater dynamics. Geomorphology 48(1–3):121–146. doi:10.1016/S0169-555X(02)00178-2

    Article  Google Scholar 

  • Huettel M, Ziebis Z, Forster S, Luther GW (1998) Advective transport affecting metal and nutrient distributions and interfacial fluxes in permeable sediments. Geochimica and Cosmochimica Acta 62(4):613–631. doi:10.1016/S0016-7037(97)00371-2

    Article  Google Scholar 

  • Hulth S, Aller RC, Canfield DE, Dalsgaard T, Engstrom P, Gilbert F, Sundback K, Thamdrup B (2005) Nitrogen removal in marine sediments: recent findings and future research challenges. Mar Chem 94(1):125–145. doi:10.1016/j.marchem.2004.07.013

    Article  Google Scholar 

  • Jensen KM, Jensen MH, Kristensen E (1996) Nitrification and denitrification in Wadden Sea sediments (Konigshafen, Island of Sylt, Germany) as measured by nitrogen isotope pairing and isotope dilution. Aquat Microb Ecol 11(2):181–191. doi:10.3354/ame011181

    Article  Google Scholar 

  • Johannes RE (1980) The ecological significance of the submarine discharge of groundwater. Mar Ecol Prog Ser 3:365–373

    Article  Google Scholar 

  • Jones MN (1984) Nitrate reduction by shaking with cadmium: alternative to cadmium columns. Water Res 18(5):643–646. doi:10.1016/0043-1354(84)90215-X

    Article  Google Scholar 

  • Jørgensen SE (1994) Fundamentals of ecological modelling. In: Developments in environmental modelling, vol 19, second edn. Elsevier, Amsterdam, pp 628

  • Kim D-H, Matsuda O, Yamamoto T (1997) Nitrification, denitrification and nitrate reduction rates in the sediment of Hiroshima Bay, Japan. J Oceanogr 53:317–324

    Google Scholar 

  • Kroeger KD, Charette MA (2008) Nitrogen biogeochemistry of submarine groundwater discharge. Limnol Oceanogr 53(3):1025–1039

    Article  Google Scholar 

  • Laima L, Brossard D, Sauriau P-G, Girard M, Richard P, Gouleau D, Joassard L (2002) The influence of long emersion on biota, ammonium fluxes and nitrification in intertidal sediments of Marennes-Ole′ ron Bay, France. Mar Environ Res 53(4):381–402. doi:10.1016/S0141-1136(01)00126-X

    Article  Google Scholar 

  • Lautz LK, Siegel DI (2006) Modeling surface and ground water mixing in the hyporheic zone using MODFLOW and MT3D. Adv Water Resour 29:1618–1633. doi:10.1016/j.advwatres.2005.12.003

    Article  Google Scholar 

  • Lee DR (1977) A device for measuring seepage flux in lakes and estuaries. Limnol Oceanogr 22(1):140–147

    Article  Google Scholar 

  • Leote C, Ibánhez JS, Rocha C (2008) Submarine groundwater discharge as a nitrogen source to the Ria Formosa studied with seepage meters. Biogeochemistry 88(2):185–194. doi:10.1007/s10533-008-9204-9

    Article  Google Scholar 

  • Luo Y, Qiao X, Song J, Christie P, Wong M (2003) Use of a multi-layer column device for study on leachability of nitrate in sludge-amended soils. Chemosphere 52(9):1483–1488. doi:10.1016/S0045-6535(03)00486-7

    Article  Google Scholar 

  • Mackenzie FT, Ver LM, Lerman A (2002) Century-scale nitrogen and phosphorus controls of the carbon cycle. Chem Geol 190(1–4):13–32. doi:10.1016/S0009-2541(02)00108-0

    Article  Google Scholar 

  • Moore SW (1999) The subterranean estuary: a reaction zone of ground water and sea water. Mar Chem 65(1–2):111–125. doi:10.1016/S0304-4203(99)00014-6

    Article  Google Scholar 

  • Nowicki BL, Portnoy J (1999) The role of sediment denitrification in reducing groundwater-derived nitrate inputs to Nauset Marsh estuary, Cape Cod, Massachusetts. Estuaries 22(2A):245–259. doi:10.1007/BF02692119

    Article  Google Scholar 

  • Nowicki BL, Van Keuren ERD, Kelly JR (1997) Nitrogen losses through sediment denitrification in Boston harbor and Massachusetts Bay. Estuaries 20(3):626–639. doi:10.1007/BF02692175

    Article  Google Scholar 

  • Pallud C, Meile C, Laverman AM, Abel J, Van Cappellen P (2007) The use of flow-through sediment reactors in biogeochemical kinetics: methodology and examples of applications. Mar Chem 106(1–2):256–271. doi:10.1016/j.marchem.2006.12.011

    Article  Google Scholar 

  • Rabouille C, Mackenzie FT, Ver LM (2001) Influence of the human perturbation on carbon, nitrogen, and oxygen biogeochemical cycles in the global coastal ocean. Geochimical et Cosmochimica Acta 65(21):3615–3641. doi:10.1016/S0016-7037(01)00760-8

    Article  Google Scholar 

  • Rapaglia JP, Bokuniewicz HJ (2009) The effect of groundwater advection on salinity in pore waters of permeable sediments. Limnol Oceanogr 54(2):630–643

    Article  Google Scholar 

  • Rivett MO, Buss SR, Morgan P, Smith JWN, Bemment CD (2008) Nitrate attenuation in groundwater: a review of biogeochemical controlling processes. Water Res 42(16):4215–4232. doi:10.1016/j.watres.2008.07.020

    Article  Google Scholar 

  • Robinson C, Li L, Barry DA (2007) Effect of tidal forcing on a subterranean estuary. Adv Water Resour 30(4):851–865. doi:10.1016/j.advwatres.2006.07.006

    Article  Google Scholar 

  • Rocha C (2008) Sandy sediments as active biogeochemical reactors: compound cycling in the fast lane. Aquat Microb Ecol 53:119–127. doi:10.3354/ame01221

    Article  Google Scholar 

  • Rocha C, Cabral AP (1998) The influence and dynamics of tidal action on porewater nitrate concentration in intertidal sediments of the Sado estuary. Estuaries 21(4A):635–645

    Article  Google Scholar 

  • Rocha C, Ibanhez J, Leote C (2009) Benthic nitrate biogeochemistry affected by tidal modulation of submarine groundwater discharge (SGD) through a sandy beach face, Ria Formosa, Southwestern Iberia. Mar Chem 115(1–2):43–58. doi:10.1016/j.marchem.2009.06.003

    Article  Google Scholar 

  • Roychoudhury AN (2001) Dispersion in unconsolidated aquatic sediments. Estuar Coast Shelf Sci 53(5):745–757. doi:10.1006/ecss.2001.0821

    Article  Google Scholar 

  • Rysgaard S, Christensen PB, Nielsen LP (1995) Seasonal variation in nitrification and denitrification in estuarine sediment colonized by benthic microalgae and bioturbating infauna. Mar Ecol Prog Ser 126:111–121. doi:10.3354/meps126111

    Article  Google Scholar 

  • Salles P (2001) Hydrodinamic controls on multiple tidal inlet persistence. PhD thesis, Massachusetts Institute of Technology/Woods Hole Oceanographic Institution

  • Schauser I, Hupfer M, Brüggemann R (2006) Sensitivity analysis with a phosphorus diagenetic model (SPIEL). Ecol Model 190(1–2):87–98. doi:10.1016/j.ecolmodel.2005.03.024

    Article  Google Scholar 

  • Seeberg-Elverfeldt J, Schluterl M, Fesekerl T, Kölling M (2005) Rhizon sampling of porewaters near the sediment-water interface of aquatic systems. Limnol Oceanogr Methods 3:361–371

    Google Scholar 

  • Shaw RD, Prepas EE (1989) Anomalous, short-term influx of water into seepage meters. Limnol Oceanogr 34(7):1343–1351

    Article  Google Scholar 

  • Sheibley RB, Jackman AP, Duff JH, Triska FJ (2003) Numerical modeling of coupled nitrification-denitrification in sediment perfusion cores from the hyporheic zone of the Shingobee River, MN. Adv Water Resour 26(9):977–987. doi:10.1016/S0309-1708(03)00088-5

    Article  Google Scholar 

  • Slater JM, Capone DG (1987) Denitrification in aquifer soil and Nearshore marine sediments influenced by groundwater nitrate. Appl Environ Microbiol 53(6):1292–1297

    Google Scholar 

  • Slomp CP, Van Cappellen P (2004) Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact. J Hydrol 295(1–4):64–86. doi:10.1016/j.jhydrol.2004.02.018

    Article  Google Scholar 

  • Soetaert K, Herman PMJ, Middelburg JJ (1996) A model of early diagenetic processes from shelf to abyssal depths. Geochim Cosmochim Acta 60(6):1019–1040. doi:10.1016/0016-7037(96)00013-0

    Article  Google Scholar 

  • Spiteri C, Slomp CP, Charette MA, Tuncay K, Meile C (2008) Flow and nutrient dynamics in a subterranean estuary (Waquoit Bay, MA, USA): field data and reactive transport modeling. Geochim Cosmochim Acta 72:3398–3412. doi:10.1016/j.gca.2008.04.027

    Article  Google Scholar 

  • Taniguchi M, Burnett WC, Dulaiova H, Kontar EA, Povinec PP, Moore WS (2006) Submarine groundwater discharge measured by seepage meters in Sicilian coastal waters. Cont Shelf Res 26:835–842. doi:10.1016/j.csr.2005.12.002

    Article  Google Scholar 

  • Ueda S, Go CU, Suzumura M, Sumi E (2003) Denitrification in a seashore sandy deposit influenced by groundwater discharge. Biogeochemistry 63(2):187–205

    Article  Google Scholar 

  • Ullman WJ, Aller RC (1982) Diffusion coefficients in nearshore marine sediments. Limnol Oceanogr 27:552–556

    Article  Google Scholar 

  • Usui T, Koike I, Ogura N (2001) N2O production, nitrification and denitrification in an estuarine sediment. Coast Shelf Sci 52(7):769–781. doi:10.1006/ecss.2000.0765

    Article  Google Scholar 

  • Vanderborght J-P, Billen G (1975) Vertical distribution of nitrate concentration in interstitial water of marine sediments with nitrification and denitrification. Limnol Oceanogr 20:953–961

    Article  Google Scholar 

  • Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of Earth’s ecosystems. Science 277(5325):494–499. doi:10.1126/science.277.5325.494

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge M. Simão, S. Pólvora and C. Moita for their help during fieldwork. The “Laboratório de Análises Químicas” kindly offered the room and spectrophotometer time required for nutrient analysis. Financial support was provided by the Portuguese Foundation for Science and Technology (FCT) through grant contracts SFRH/BD/39170/2007 (Fellowship to JSPI) and SFRH/BD/38856/2007 (Fellowship to CL), and project O-DOIS: Oxygen dynamics coupled to carbon mineralization in sandy intertidal sediments, contract ref: POCTI/CTA/47048/2002. The two anonymous reviewers and the editor are acknowledged for their constructive comments which helped to improve the earlier draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Severino P. Ibánhez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ibánhez, J.S.P., Leote, C. & Rocha, C. Porewater nitrate profiles in sandy sediments hosting submarine groundwater discharge described by an advection–dispersion-reaction model. Biogeochemistry 103, 159–180 (2011). https://doi.org/10.1007/s10533-010-9454-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-010-9454-1

Keywords

Navigation