Skip to main content
Log in

Effect of pH and dissolved organic matter on the abundance of nirK and nirS denitrifiers in spruce forest soil

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Acid N depositions in the Bohemian Forest during the second half of the last century caused enormous soil acidification which led to the leaching of essential nutrients including nitrates. We investigated the effect of dissolved organic matter (DOM) and pH on the abundance of 16S RDNA, nirK and nirS gene copies in four spruce forest sites. Soil samples for molecular based quantification (qPCR) were taken from the organic litter and humus layers. The amounts of dissolved organic carbon (DOC) and dissolved nitrogen (DN) were much lower in highly acidified soils. We found a strong correlation between nirK denitrifiers and the amount of available P (r = 0.83, p < 0.001), which suggested a higher nutrient sensitivity of this group of denitrifying bacteria. Additionally, we found that correlations between the amount of nirK denitrifiers and DOC and pH are exponentional showing two important threshold values, being 4.8 mol kg−1 and 5, respectively. The amount of nirK denitrifiers rapidly decreased below these values. The amount of nirK and nirS denitrifiers was higher in the organic litter horizon than the organic humus horizon at all sampling sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bárta J, Applová M, Vaněk D, Krištůfková M, Šantrůčková H (2010) Effect of available P and phenolics on mineral N release in acidified spruce forest: connection with lignin-degrading enzymes and bacterial and fungal communities. Biogeochemistry 97:71–87

    Article  Google Scholar 

  • Cabrita MT, Brotas V (2000) Seasonal variation in denitrification and dissolved nitrogen fluxes in intertidal sediments of the Tagus estuary, Portugal. Mar Ecol 202:51–65

    Article  Google Scholar 

  • Cappo KA, Blume LJ, Raab GA, Bartz JK, Engels JL (1987) Analytical methods manual for the direct/delayed response project soil survey. US EPA, Las Vegas (sections 8–11)

  • Chéneby D, Philippot L, Hartmann A, Hénault F, Germon JC (2000) 16S rRNA analysis for characterization of denitrifying bacteria isolated from three agricultural soils. FEMS Microbiol Ecol 34:121–128

    Google Scholar 

  • Clément JC, Pinay G, Marmonier P (2002) Seasonal dynamics of denitrification along topohydrosequences in three different riparian wetlands. J Environ Qual 31:1025–1037

    Article  Google Scholar 

  • Dauer JM, Chorover J, Chadwick OA, Oleksyn J, Tjoelker MG, Hobbie SE, Reich PB, Eissen-stat DM (2007) Controls over leaf and litter calcium concentrations among temperate trees. Biogeochemistry 86:175–187

    Article  Google Scholar 

  • David MB, Vance GF, Rissing JM, Stevenson FJ (1989) Organic carbon fractions in extracts of O and B horizons from a New England spodsols: effect of acid treatment. J Environ Qual 18:212–217

    Article  Google Scholar 

  • Fogel GB, Collins CR, Li J, Brunk CF (1999) Prokaryotic genome size and SSU rDNA copy number: estimation of microbial relative abundance from a mixed population. Microb Ecol 38:93–113

    Article  Google Scholar 

  • Galloway JN, Cowling EB (2002) Reactive nitrogen and the world: 200 years of change. Ambio 31:64–71

    Google Scholar 

  • Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB, Cosby BJ (2003) The nitrogen cascade. Bioscience 53:341–356

    Article  Google Scholar 

  • Greenland DJ (1971) Adsorption of humic and fulvic acids by soils. Soil Sci 111:34–43

    Article  Google Scholar 

  • Henry S, Baudion E, López-Guitérez JC, Martin-Laurent F, Brauman A, Philippot L (2004) Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR. J Microbiol Methods 59:327–335

    Article  Google Scholar 

  • Henry S, Bru D, Stres B, Hallet S, Philippot L (2006) Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Appl Environ Microbiol 72:5181–5189

    Article  Google Scholar 

  • Heylen K, Gevers D, Vanparys B, Wittebolle L, Geets J, Boon N, De Vos P (2006) The incidence of nirS and nirK and their genetic heterogeneity in cultivated denitrifiers. Environ Microbiol 8:2012–2021

    Article  Google Scholar 

  • Kaňa J, Kopáček J (2006) Impact of soil sorption characteristics and bedrock composition on phosphorus concentrations in two Bohemian Forest Lakes. Water Air Soil Pollut 173:243–259

    Article  Google Scholar 

  • Kandeler E, Deighlmayr K, Tscherko D, Bru D, Philippot L (2006) Abundance of narG, nirS, nirK, and nosZ genes of denitrifying bacteria during primary successions of a glacier foreland. Appl Environ Microbiol 72:5957–5962

    Article  Google Scholar 

  • Koopmans GF, Chardon WJ, de Willigen P, van Riemsdijk WH (2004) Phosphorus desorption dynamics in soil and the link to a dynamic concept of bioavailability. J Environ Qual 33:1393–1402

    Article  Google Scholar 

  • Kopáček J, Kaňa J, Šantrůčková H, Porcal P, Hejzlar J, Picek T, Veselý J (2002a) Physical, chemical, and biochemical characteristics of soils in watersheds of the Bohemian Forest Lakes: I. Plešné Lake. Silva Gabreta 8:43–62

    Google Scholar 

  • Kopáček J, Kaňa J, Šantrůčková H, Porcal P, Hejzlar J, Picek T, Šimek M, Veselý J (2002b) Physical, chemical, and biochemical characteristics of soils in watersheds of the Bohemian Forest Lakes: II.Čertovo and Černé Lakes. Silva Gabreta 8:63–93

    Google Scholar 

  • Livsey S, Barklund P (1992) Lophodermium piceae and Rhizosphaera kalkhoffii in fallen needles of Norway spruce (Picea abies). Eur J For Pathol 22:204–216

    Article  Google Scholar 

  • López-Gutiérrez J, Henry S, Hallet S, Martin-Laurent F, Catroux G, Philippot L (2004) Quantification of a novel group of nitrate-reducing bacteria in the environment by real-time PCR. J Microbiol Methods 57:399–407

    Article  Google Scholar 

  • Magill AH, Aber JD, Hendricks JJ, Bowden RD, Melillo JM, Steudler PA (1997) Biogeochemical response of forest ecosystems to simulated chronic nitrogen deposition. Ecol Appl 7:402–415

    Article  Google Scholar 

  • Nadelhoffer KJ, Emmett BA, Gundersen P, Kjonaas OJ, Koopmans CJ, Schleppi P, Tietema A (1999) Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature 398:145–148

    Article  Google Scholar 

  • Northup RR, Dahlgren RA, McColl JG (1998) Polyphenols as regulators of plant-litter-soil interactions in northern Californias pygmy forest: a positive feedback? Biogeochemistry 42:189–220

    Article  Google Scholar 

  • Pawłowski L (1997) Acidification: its impact on the environment and mitigation strategies. Ecol Eng 8:271–288

    Article  Google Scholar 

  • Pote DH, Daniel TC, Sharpley AN, Moore PA, Edwards DR, Nichols DJ (1996) Relating extractable soil phosphorus to phosphorus losses in runoff. Soil Sci Am J 60:855–859

    Article  Google Scholar 

  • Quails RG, Raines BL (1992) Biodegradability of dissolved organic matter in forest throughfall, soil solution, and stream water. Soil Sci Soc Am J 56:578–586

    Article  Google Scholar 

  • Rösch C, Mergel A, Bothe H (2002) Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil. Appl Environ Microbiol 68:3818–3829

    Article  Google Scholar 

  • Saleh-Lakha S, Shannon KE, Henderson SL, Goyer C, Trevors JT, Zebarth BJ, Buton DL (2009) Effect of pH and temperature on denitrification gene expression and activity in Pseudomonas mandelii. Appl Environ Microbiol 75:3903–3911

    Article  Google Scholar 

  • Šantrůčková H, Vrba J, Picek T, Kopáček J (2004) Soil biochemical activity and phosphorus transformations and losses from acidified forest soils. Soil Biol Biochem 36:1569–1576

    Article  Google Scholar 

  • Šantrůčková H, Krištůfková M, Vaněk D (2006) Decomposition rate and nutrient release from plant litter of Norway spruce forest in the Bohemian Forest. Biologia (Bratisl) 61:S499–S508

    Article  Google Scholar 

  • Šantrůčková H, Šantrůček J, Setlik J, Svoboda M, Kopacek J (2007) Carbon isotopes in tree rings of Norway spruce exposed to atmospheric pollution. Environ Sci Technol 41:5778–5782

    Article  Google Scholar 

  • Schindler DW, Bayley SE, Curtis PJ, Parker BR, Stainton MP, Kelly CA (1992) Natural and man-caused factors affecting the abundance and cycling of dissolved organic substances in Precambrian shield lakes. Hydrobiology 229:1–21

    Google Scholar 

  • Schwertmann U (1964) Differenzierung der eisenoxiden des bodens duerch extraction mit amoniumoxalaat lösung. Z Pflanzenerähr Düng Bodenkd 105:194–202

    Article  Google Scholar 

  • Sinsabaugh RL, Carreiro MM, Repert DA (2002) Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss. Biogeochemistry 60:1–24

    Article  Google Scholar 

  • Sinsabaugh RL, Gallo ME, Lauber C, Waldrop MP, Zak DR (2005) Extracellular enzyme activities and soil organic matter dynamics for northern hardwood forests receiving simulated nitrogen deposition. Biogeochemistry 75:201–215

    Article  Google Scholar 

  • Snajdr J, Valaskova V, Merhautova V, Herinkova J, Cajthaml T, Baldrian P (2008) Spatial variability of enzyme activities and microbial biomass in the upper layers of Quercus petraea forest soil. Soil Biol Biochem 40:2068–2075

    Article  Google Scholar 

  • Svoboda M, Matějka K, Kopáček J (2006) Biomass and element pools of understory vegetation in the catchments of Čertovo Lake and Plešné Lake in the Bohemian Forest. Biologia (Bratisl) 61:S509–S521

    Article  Google Scholar 

  • Tiedje JM (1988) Ecology of denitrification and dissimilatory nitrate reduction to ammonium. In: Zehnder A (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 179–244

    Google Scholar 

  • Tomlinson GH (2003) Acid deposition, nutrient leaching and forest growth. Biogeochemistry 65:51–81

    Article  Google Scholar 

  • van der Zee SEATM, Fokkink LGJ, van Riemsdijk WH (1987) A new technique for assessment of reversibly adsorbed phosphate. Soil Sci Am J 51:599–604

    Article  Google Scholar 

  • van Kessel C, Pennock DJ, Farrell RE (1993) Seasonal variations in denitrification and nitrous oxide evolution at the landscape scale. Soil Sci Soc Am J 57:988–995

    Article  Google Scholar 

  • Veselý J (1994) Investigation of the nature of the Šumava lakes: a review. J Natl Mus Nat Hist Ser 163:103–120

    Google Scholar 

  • Waldrop MP, Zak DR (2006) Response of oxidative enzyme activities to nitrogen deposition affects soil concentrations of dissolved organic carbon. Ecosystems 9:921–933

    Article  Google Scholar 

  • Wertz S, Dandie CE, Goyer C, Trevors JT, Pattern CL (2009) Diversity of nirK denitrifying genes and transcripts in an agricultural soil. Appl Environ Microbiol 75:7365–7377

    Article  Google Scholar 

  • Winder RS, Levy-Booth DJ (2009) Quantification of nitrogen cycling functional gene abundance in soil of variably-retained stands of Douglas-fir (Pseudotsuga menziesii ssp. menziesii (Mirb.) Franco). Working papers of the Finnish Forest Research Institute 128:225

  • Yaganza ES, Rioux D, Simard M, Arul Jl, Tweddell RJ (2004) Ultrastructural alterations of Erwinia carotovora subsp. atroseptica caused by treatment with aluminum chloride and sodium metabisulfite. Appl Environ Microbiol 70:6800–6808

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Czech Science Foundation, project 526/08/0751 and 206/07/1200 and the project MSM 6007665801. We acknowledge the laboratory and field assistance provided by our colleagues and students. We also thank the authorities of NP Šumava and The Jizera Mountains for permission to study the spruce forest ecosystems. We thank our American colleague Dr. Keith Edwards for language correction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Bárta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bárta, J., Melichová, T., Vaněk, D. et al. Effect of pH and dissolved organic matter on the abundance of nirK and nirS denitrifiers in spruce forest soil. Biogeochemistry 101, 123–132 (2010). https://doi.org/10.1007/s10533-010-9430-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-010-9430-9

Keywords

Navigation