Skip to main content
Log in

Kinetics of Sulfate Reduction in a Coastal Aquifer Contaminated with Petroleum Hydrocarbons

  • Original Paper
  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

An integrated field and laboratory study was conducted to quantify the effect of environmental determinants on the activity of sulfate reducers in a freshwater aquifer contaminated with petroleum hydrocarbons (PHC). Within the contaminated zone, PHC-supported in␣situ sulfate reduction rates varied from 11.58±3.12 to 636±53 nmol cm−3 d−1 and a linear increase (R 2=0.98) in reduction rate was observed with increasing in situ sulfate concentrations suggesting sulfate limitation. Half-saturation concentration (K s) for sulfate reduction coupled to PHC mineralization was determined for the first time. At two different sites within the␣aquifer, maximum sulfate reduction rate under␣non-limiting conditions (R max) was 5,000 nmol cm−3 d−1, whereas the retrieved K s values were 3.5 and 7.5 mM, respectively. The K s values are the highest ever reported from a natural environment. Furthermore, the K s values were significantly higher than in situ sulfate concentrations confirming sulfate limited growth. On addition of lactate and formate, sulfate reduction rate increased indicating that reactivity and bioavailability of organic substrate may also have played a role in rate inhibition in certain parts of the aquifer. Experiments with sulfide amendments show statistically minor decrease in sulfate reduction rates on addition of sulfide and analogous increase in sulfide toxicity with increasing sulfide concentrations (0.5–10 mM) was not apparent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aharon P, Fu B (2000) Microbial sulfate reduction rates and sulfur and oxygen isotope fractionations at oil and gas seeps in deepwater Gulf of Mexico. Geochimica et Cosmochimica Acta 64(2):233–246

    Article  Google Scholar 

  • Baker RJ, Baehr AL, Lahvis MA (2000) Estimation of hydrocarbon biodegradation rates in gasoline-contaminated sediment from measured respiration rates. J Contam Hydrol 41(1–2):175–192

    Article  Google Scholar 

  • Beller HR, Grabić-Galić D, Reinhard M (1992) Microbial degradation of Toluene under sulfate-reducing conditions and the influence of iron on the process. Appl Environ Microbiol 58(3):786–793

    Google Scholar 

  • Boudreau BP, Westrich JT (1984) The dependence of bacterial sulfate reduction on sulfate concentration in marine sediments. Geochimica et Cosmochimica Acta 48:2503–2516

    Article  Google Scholar 

  • Brezonik PL (1994) chemical kinetics and process dynamics in aquatic systems. Lewis, Boca Raton, 754pp

    Google Scholar 

  • Cappenberg TE, Prins RA (1974) Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of fresh-water lake. III. Experiments with 14C-labelled substrates. J Microbiol 40:457–469

    Google Scholar 

  • Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458

    Article  Google Scholar 

  • Coates JD, Chakraborty R, McInerney MJ (2002) Anaerobic benzene biodegradation—a new era. Res Microbiol 153(10):621–628

    Article  Google Scholar 

  • Cozzarelli IM, Baedecker MJ, Eganhouse RP, Goerlitz DF (1994) The geochemical evolution of low-molecular-weight organic acids derived from the degradation of petroleum contaminants in groundwater. Geochimica et Cosmochimica Acta 58(2):863–877

    Article  Google Scholar 

  • Edwards EA, Wills LE, Reinhard M, Grabić-Galić D (1992) Anaerobic degradation of Toluene and Xylene by aquifer microorganisms under sulfate-reducing conditions. Appl Environ Microbiol 55(3):794–800

    Google Scholar 

  • Elshahed MS, McInerney MJ (2001) Is interspecies hydrogen transfer needed for toluene degradation under sulfate-reducing conditions? FEMS Microbiol Ecol 35(2):163

    Article  Google Scholar 

  • Fishbain S, Dillon JG, Gough HL, Stahl DA (2003) Linkage of high rates of sulfate reduction in Yellowstone hot springs to unique sequence types in the dissimilatory sulfate respiration pathway. Appl Environ Microbiol 69(6):3663–3667

    Article  Google Scholar 

  • Fossing H, Jørgensen BB (1989) Measurement of bacterial sulfate reduction in sediments: Evaluation of a single-step chromium reduction method. Biogeochemistry 8(3):205–222

    Article  Google Scholar 

  • Fukui M, Takii S (1994) Kinetics of sulfate reduction by free living and particle-associated SRB. FEMS Micirobiol Ecol 13(4):241–247

    Article  Google Scholar 

  • Grabić-Galić D, Vogel TM (1987) Transformation of toluene and benzene by mixed methanogenic cultures. Appl Environ Microbiol 53:254–260

    Google Scholar 

  • Grishchenkov VG, Townsend RT, McDonald TJ, Autenrieth RL, Bonner JS, Boronin AM (2000) Degradation of petroleum hydrocarbons by facultative anaerobic bacteria under aerobic and anaerobic conditions. Proc Biochem 35:889–896

    Article  Google Scholar 

  • Hordijk KA, Cappenberg TE (1983) Quantitative high-pressure liquid chromatography-fluorescence determination of some important lower fatty-acids in lake sediments. Appl Environ Microbiol 46:361–369

    Google Scholar 

  • Hunkeler D, Jorger D, Haberli K, Hohener P, Zeyer J (1998) Petroleum hydrocarbon mineralization in anaerobic laboratory aquifer columns. J Contam Hydrol 32(1–2):41–61

    Article  Google Scholar 

  • Ingvorsen K, Jørgensen BB (1984) Kinetics of sulfate uptake by freshwater and marine species of Desulfovibria. Arch Microbiol 139(1):61–66

    Article  Google Scholar 

  • Ingvorsen K, Zehnder AJB, Jørgensen BB (1984) Kinetics of sulfate and acetate uptake by Desulfobacter postgatei. Appl Environ Microbiol 47(2):403–408

    Google Scholar 

  • Ingvorsen K, Zeikus JG, Brock T D (1981) Dynamics of bacterial sulfate reduction in a eutrophic lake. Appl Environ Microbiol 42:1029–1036

    Google Scholar 

  • Johnson SJ, Woolhouse KJ, Prommer H, Barry DA, Christofi N (2003) Contribution of anaerobic microbial activity to natural attenuation of benzene in groundwater. Eng Geol 70(3–4):343–349

    Article  Google Scholar 

  • Kao CM, Chen SC, Liu JK, Wang YS (2001) Application of microbial enumeration technique to evaluate the occurrence of natural bioremediation. Water Res 35(8):1951–1960

    Article  Google Scholar 

  • Kleikemper J, Pelz O, Schroth MH, Zeyer J (2002a) Sulfate-reducing bacterial community response to carbon source amendments in contaminated aquifer microcosms. FEMS Microbiol Ecol 42(1):109–118

    Article  Google Scholar 

  • Kleikemper J, Schroth MH, Sigler WV, Schmucki M, Bernasconi SM, Zeyer J (2002b) Activity and Diversity of Sulfate-Reducing Bacteria in a Petroleum Hydrocarbon-Contaminated Aquifer. Appl Environ Microbiol 68:1516

    Article  Google Scholar 

  • Lovely DR, Klug MJ (1986) Model for the distribution of methane production and sulfate reduction in freshwater sediments. Geochimica et Cosmochimica Acta 50:11–18

    Article  Google Scholar 

  • Maliyekkal SM, Rene ER, Philip L, Swaminathan T (2004) Performance of BTX degraders under substrate versatility conditions. J Hazard Mater 109(1–3):201–211

    Article  Google Scholar 

  • Matias PM, Pereira IAC, Soares CM, Carrondo MA (2005) Sulphate respiration from hydrogen in Desulfovibrio bacteria: a structural biology overview. Progr Biophys Mol Biol 89(3):292–329

    Article  Google Scholar 

  • Meckenstock RU (1999) Fermentative toluene degradation in anaerobic defined syntrophic cocultures. FEMS Microbiol Lett 177:67–73

    Article  Google Scholar 

  • Meier J, Voigt A, Babenzien HD (2000) A comparison of S-35-SO42- radiotracer techniques to determine sulphate reduction rates in laminated sediments. J Microbiol Methods 41(1):9–18

    Article  Google Scholar 

  • Monod J (1949) The growth of bacterial cultures. Ann Rev Microbiol 3:371–394

    Article  Google Scholar 

  • Nakagawa T, Sato S, Yamamoto Y, Fukui M (2002) Successive changes in community structure of an ethylbenzene-degrading sulfate-reducing consortium. Water Res 36(11):2813–2823

    Article  Google Scholar 

  • Oȁ9Flaherty V, Mahony T, Oȁ9Kennedy R, Colleran E (1998) Effect of pH on growth kinetics and sulfide toxicity thresholds of a range of methanogenic, syntrophic and sulphate-reducing bacteria. Proc Biochem 33(5):555–569

    Article  Google Scholar 

  • Okabe S, Nielsen PH, Characklis WG (1992) Factors affecting microbial sulfate reduction by Desulfovibrio desulfuricans in continuous culture: Limiting nutrients and sulfide concentration. Biotechnol Bioeng 40:725–734

    Article  Google Scholar 

  • Oude Elferink SJWH, Luppens SBI, Marcelis CLM, Stams AJM (1998) Kinetics of acetate oxidation by two sulfate reducers isolated from anaerobic granular sludge. Appl Environ Microbiol 64(6):2301–2303

    Google Scholar 

  • Reis MAM, Almeida JS, Lemos PC, Carrondo MJT (1992) Effect of hydrogen sulfide on growth of sulfate reducing bacteria. Biotechnol Bioeng 40:593–600

    Article  Google Scholar 

  • Roels JA (1983) Energetics and kinetics in biotechnology. Elsevier Biomedical Press, Amsterdam

    Google Scholar 

  • Rothermich MM, Hayes LA, Lovley DR (2002) Anaerobic, sulfate-dependent degradation of polycyclic aromatic hydrocarbons in petroleum-contaminated harbor sediment. Environ Sci Technol 36:4811–4817

    Article  Google Scholar 

  • Roychoudhury AN (2004) Sulfate respiration in extreme environments: a kinetic study. Geomicrobiol J 21(1):33–43

    Article  Google Scholar 

  • Roychoudhury AN, Kostka JE, Van Cappellen P (2003a) Pyritization: a palaeoenvironmental and redox proxy reevaluated. Estuar Coast Shelf Sci 57(5–6):1183–1193

    Article  Google Scholar 

  • Roychoudhury AN, Merrett GL (2006) Redox pathways in a petroleum contaminated shallow sandy aquifer: iron and sulfate reduction. Sci Total Environ (doi: 10.1016/j.scitotenv.2005.10.024)

  • Roychoudhury AN, Van Cappellen P, Kostka JE, Viollier E (2003b) Kinetics of microbially mediated reactions: dissimilatory sulfate reduction in saltmarsh sediments (Sapelo Island, Georgia, USA). Estuar Coast Shelf Sci 56(5–6):1001–1010

    Article  Google Scholar 

  • Roychoudhury AN, Viollier E, Van Cappellen P (1998) A plug flow-through reactor for studying biogeochemical reactions in undisturbed aquatic sediments. Appl Geochem 13(2):269–280

    Article  Google Scholar 

  • Sarazin G, Michard G, Prevot F (1999) A rapid and accurate spectroscopic method for alkalinity measurements in sea water samples. Water Res 33(1):290–294

    Article  Google Scholar 

  • Schmitt R, Langguth H-R, Puttmann W, Rohns HP, Eckert P, Schubert J (1996) Biodegradation of aromatic hydrocarbons under anoxic conditions in a shallow sand and gravel aquifer of the Lower Rhine Valley, Germany. Organ Geochem 25(1–2):41–50

    Article  Google Scholar 

  • Shim H, Yang S-T (1999) Biodegradation of benzene, toluene, ethylbenzene, and o-xylene by a coculture of Pseudomonas putida and Pseudomonas fluorescens immobilized in a fibrous-bed bioreactor. J Biotechnol 67(2–3):99–112

    Article  Google Scholar 

  • Shin WS, Pardue JH, Jackson WA (2000) Oxygen demand and sulfate reduction in petroleum hydrocarbon contaminated salt marsh soils. Water Res 34(4):1345–1353

    Article  Google Scholar 

  • Smith RL, Klug MJ (1981) Reduction of sulfur compounds in the sediments of a eutrophic lake basin. Appl Environ Microbiol 41:1230–1237

    Google Scholar 

  • Somsamak P, Cowan RM, Haggblom MM (2001) Anaerobic biotransformation of fuel oxygenates under sulfate-reducing conditions. FEMS Microbiol Ecol 37(3):259–264

    Article  Google Scholar 

  • Sonne-Hansen J, Westermann P, Ahring BK (1999) Kinetics of sulfate and hydrogen uptake by the thermophilic sulfate-reducing bacteria Thermodesulfobacterium sp Strain JSP and Thermodesulovibria sp Strain R1Ha3. Appl Environ Microbiol 65(3):1304–1307

    Google Scholar 

  • Sørensen J, Christensen D, Jørgensen BB (1981) Volatile fatty acids and hydrogen as substrates for sulfate-reducing bacteria in anaerobic marine sediments. Appl Environ Microbiol 42:5–11

    Google Scholar 

  • Stookey LL (1970) Ferrozine-A New spectrophotometric reagent for iron. Analyt Chem 42(7):779–781

    Article  Google Scholar 

  • Tabatabai MA (1974) A rapid method for determination of sulfate in water samples. Environ Lett 7(3):237–242

    Article  Google Scholar 

  • Urban NR, Brezonik PL, Barker LA, Sherman LA (1994) Sulfate reduction and diffusion in sediments of Little Rock Lake, Wisconsin. Limnol Oceanogr 39(4):797–815

    Article  Google Scholar 

  • Vavilin VA, Vasiliev VB, Rytov SV, Ponomarev AV (1994) Self-oscillating coexistence of methanogens and sulfate-reducers under hydrogen sulfide inhibition and the pH-regulating effect. Bioresource Technol 49(2):105–119

    Article  Google Scholar 

  • Villatoro-Monzón WR, Mesta-Howard AM, Razo-Flores E (2003) Anaerobic biodegradation of BTEX using Mn(IV) and Fe(III) as alternative electron acceptors. Water Sci Technol 48(6):125–131

    Google Scholar 

  • Yoda M, Kitagawa M, Miyaji Y (1987) Long term competition between sulfate-reducing and methane-producing bacteria for acetate in an anaerobic biofilm. Water Res 21:1547–1556

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by research grants from NRF, South Africa (GUN# 2053191 and FA2004041200002). The authors would like to thank Paul Aucamp and Ross Campbell of “Kantey and Templer Consulting Engineers” for allowing access to the field site and for discussions on prior history of contamination at the site. Comments from two anonymous reviewers and Anne Hershey helped improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alakendra N. Roychoudhury.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roychoudhury, A.N., McCormick, D.W. Kinetics of Sulfate Reduction in a Coastal Aquifer Contaminated with Petroleum Hydrocarbons. Biogeochemistry 81, 17–31 (2006). https://doi.org/10.1007/s10533-006-9027-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-006-9027-5

Key words

Navigation