Skip to main content

Biodegradation of 4-hydroxybenzoic acid by Acinetobacter johnsonii FZ-5 and Klebsiella oxytoca FZ-8 under anaerobic conditions

Abstract

4-Hydroxybenzoic acid (4-HBA) is a common organic compound that is prevalent in the environment, and the persistence of 4-HBA residues results in exertion of pollution-related detrimental effects. Bioremediation is an effective method for the removal of 4-HBA from the environment. In this study, two bacterial strains FZ-5 and FZ-8 capable of utilizing 4-HBA as the sole carbon and energy source under anaerobic conditions were isolated from marine sediment samples. Phylogenetic analysis identified the two strains FZ-5 and FZ-8 as Acinetobacter johnsonii and Klebsiella oxytoca, respectively. The strains FZ-5 and FZ-8 degraded 2000 mg·L−1 4-HBA in 72 h with degradation rates of 71.04% and 80.10%, respectively. The optimum culture conditions for degradation by the strains and crude enzymes were also investigated. The strains FZ-5 and FZ-8 also exhibited the ability to degrade other lignin-derived compounds, such as protocatechuic acid, cinnamic acid, and vanillic acid. Immobilization of the two strains showed that they could be used for the bioremediation of 4-HBA in an aqueous environment. Soils inoculated with the strains FZ-5 and FZ-8 showed higher degradation of 4-HBA than the uninoculated soil, and the strains could survive efficiently in anaerobic soil. This is the first report of 4-HBA-degrading bacteria, belonging to the two genera, which showed degradation ability under anaerobic conditions. This study expound the strains could efficiently degrade 4-HBA in anaerobic soil and will help in the development of 4-HBA anaerobic bioremediation systems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Abbas T, Zhang Q, Jin H, Li Y, Liang Y, Di H, Zhao Y (2019) Anammox microbial community and activity changes in response to water and dissolved oxygen managements in a paddy-wheat soil of Southern China. Sci Total Environ 1(672):305–313. https://doi.org/10.1016/j.scitotenv.2019.03.392

    CAS  Article  Google Scholar 

  2. Akbar S, Sultan S (2016) Soil bacteria showing a potential of chlorpyrifos degradation and plant growth enhancement. Braz J Microbiol 47(3):563–570. https://doi.org/10.1016/j.bjm.2016.04.009

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Allende JL, Gibello A, Fortún A, Mengs G, Ferrer E, Martín M (2000) 4-Hydroxybenzoate uptake in an isolated soil Acinetobacter sp. Curr Microbiol 40(1):34–39. https://doi.org/10.1007/s002849910007

    CAS  Article  PubMed  Google Scholar 

  4. Awasthi S, Srivastava P, Singh P, Tiwary D, Mishra PK (2017) Biodegradation of thermally treated high-density polyethylene (HDPE) by Klebsiella pneumonia CH001. 3 Biotech 7(5):332. https://doi.org/10.1007/s13205-017-0959-3

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bais HP, Vepachedu R, Gilroy S, Callaway RM, Vivanco JM (2003) Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science. 301(5638):1377-80 https://doi.org/10.1126/science.1083245. Erratum in: Science. 2010 Feb 12; 327(5967):781

  6. Cao XQ, Ouyang XY, Chen B, Song K, Zhou L, Jiang BL, Tang JL, Ji G, Poplawsky AR, He YW (2020) Genetic interferences analysis reveals that both 3-hydroxybenzoic acid and 4-hydroxybenzoic acid are involved in xanthomonadin biosynthesis in the phytopathogen Xanthomonas campestris pv. campestris. Phytopathology 110(2):278–286. https://doi.org/10.1094/PHYTO-08-19-0299-R

    CAS  Article  PubMed  Google Scholar 

  7. Chamkha M, Record E, Garcia JL, Asther M, Labat M (2002) Isolation from a shea cake digester of a tannin-tolerant Escherichia coli strain decarboxylating p-hydroxybenzoic and vanillic acids. Curr Microbiol 44(5):341–349. https://doi.org/10.1007/s00284-001-0020-x

    CAS  Article  PubMed  Google Scholar 

  8. Chen Y, Peng Y, Dai CC, Ju Q (2011) Biodegradation of 4-hydroxybenzoic acid by Phomopsis liquidambari. Appl Soil Ecol 51:102–110. https://doi.org/10.1016/j.apsoil.2011.09.004

    Article  Google Scholar 

  9. Dalvi S, Nicholson C, Najar F, Roe BA, Canaan P, Hartson SD, Fathepure BZ (2014) Arhodomonas sp. strain seminole and its genetic potential to degrade aromatic compounds under high-salinity conditions. Appl Environ Microbiol 80(21):6664–6676. https://doi.org/10.1128/AEM.01509-14

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Distelmaier F (2018) 4-Hydroxybenzoic acid for multiple system atrophy. Parkinsonism Relat Disord 50:119–120. https://doi.org/10.1016/j.parkreldis.2018.01.019

    Article  PubMed  Google Scholar 

  11. Dreij K, Lundin L, Le Bihanic F, Lundstedt S (2020) Polycyclic aromatic compounds in urban soils of Stockholm City: occurrence, sources and human health risk assessment. Environ Res 182:108989. https://doi.org/10.1016/j.envres.2019.108989

    CAS  Article  PubMed  Google Scholar 

  12. Evans WC, Fuchs G (1988) Anaerobic degradation of aromatic compounds. Annu Rev Microbiol 42:289–317. https://doi.org/10.1146/annurev.mi.42.100188.001445

    CAS  Article  PubMed  Google Scholar 

  13. Ferreira LM, Durrant AJ, Hall J, Hazlewood GP, Gilbert HJ (1990) Spatial separation of protein domains is not necessary for catalytic activity or substrate binding in a xylanase. Biochem J 269(1):261–264. https://doi.org/10.1042/bj2690261

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Fuchs G, Boll M, Heider J (2011) Microbial degradation of aromatic compounds – from one strategy to four. Nat Rev Microbiol 9(11):803–816. https://doi.org/10.1038/nrmicro2652

    CAS  Article  PubMed  Google Scholar 

  15. Genethliou C, Kornaros M, Dailianis S (2020) Biodegradation of olive mill wastewater phenolic compounds in a thermophilic anaerobic upflow packed bed reactor and assessment of their toxicity in digester effluents. J Environ Manage 255:109882. https://doi.org/10.1016/j.jenvman.2019.109882

    CAS  Article  PubMed  Google Scholar 

  16. González-Gaya B, Martínez-Varela A, Vila-Costa M, Casal P, Cerro-Gálvez E, Berrojalbiz N, Lundin D, Vidal M, Mompeán C, Bode A (2019) Biodegradation as an important sink of aromatic hydrocarbons in the oceans. Nat Geosci 12(2):119–125. https://doi.org/10.1038/s41561-018-0285-3

    CAS  Article  Google Scholar 

  17. Gopi Kiran M, Pakshirajan K, Das G (2018) Heavy metal removal from aqueous solution using sodium alginate immobilized sulfate reducing bacteria: mechanism and process optimization. J Environ Manage 15(218):486–496. https://doi.org/10.1016/j.jenvman.2018.03.020

    CAS  Article  Google Scholar 

  18. Gu HP, Yan K, You Q, Chen YZ, Pan YH, Wang HZ, Wu LS, Xu JM (2021) Soil indigenous microorganisms weaken the synergy of Massilia sp. WF1 and Phanerochaete chrysosporium in phenanthrene biodegradation. Sci Total Environ 781:146655. https://doi.org/10.1016/j.scitotenv.2021.146655

    CAS  Article  PubMed  Google Scholar 

  19. Gupta B, Puri S, Thakur IS, Kaur J (2020) Enhanced pyrene degradation by a biosurfactant producing Acinetobacter baumannii BJ5: growth kinetics, toxicity and substrate inhibition studies. Environ Technol Inno 19:100804. https://doi.org/10.1016/j.eti.2020.100804

    Article  Google Scholar 

  20. Hilal N, Nigmatullin R, Alpatova A (2004) Immobilization of cross-linked lipase aggregates within microporous polymeric membranes. J Membrane Sci 238(1–2):131–141. https://doi.org/10.1016/j.memsci.2004.04.002

    CAS  Article  Google Scholar 

  21. Huang Y, Zhao KX, Shen XH, Jiang CY, Liu SJ (2008) Genetic and biochemical characterization of a 4-hydroxybenzoate hydroxylase from Corynebacterium glutamicum. Appl Microbiol Biotechnol 78(1):75–83. https://doi.org/10.1007/s00253-007-1286-0

    CAS  Article  PubMed  Google Scholar 

  22. Iii C, Stuart F (1995) New cog in the nitrogen cycle. Nature 377(6546):199–200

    Article  Google Scholar 

  23. Jiang G, Li Y, Liu J (2013) Autotoxicity potentia of cotton tissues and root exudates and identification of its autotoxins. Allelopathy J 32(2):279–288. https://doi.org/10.1111/pbr.12049

    CAS  Article  Google Scholar 

  24. Kasai D, Masai E, Katayama Y, Fukuda M (2007) Degradation of 3-O-methylgallate in Sphingomonas paucimobilis SYK-6 by pathways involving protocatechuate 4,5-dioxygenase. FEMS Microbiol Lett 274(2):323–328. https://doi.org/10.1111/j.1574-6968.2007.00855.x

    CAS  Article  PubMed  Google Scholar 

  25. Kasai D, Fujinami T, Abe T, Mase K, Katayama Y, Fukuda M, Masai E (2009) Uncovering the protocatechuate 2,3-cleavage pathway genes. J Bacteriol 191(21):6758–6768. https://doi.org/10.1128/JB.00840-09

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Kiel M, Engesser KH (2015) The biodegradation vs. biotransformation of fluorosubstituted aromatics. Appl Microbiol Biot 99:7433–7464. https://doi.org/10.1007/s00253-015-6817-5

    CAS  Article  Google Scholar 

  27. Lal B, Khanna S (1996) Degradation of crude oil by Acinetobacter calcoaceticus and Alcaligenes odorans. J Appl Bacteriol 81(4):355–362. https://doi.org/10.1111/j.1365-2672.1996.tb03519.x

    CAS  Article  PubMed  Google Scholar 

  28. Leuthner B, Heider J (2000) Anaerobic toluene catabolism of Thauera aromatica: the bbs operon codes for enzymes of beta oxidation of the intermediate benzylsuccinate. J Bacteriol 182(2):272–277. https://doi.org/10.1128/jb.182.2.272-277.2000

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Liao C, Shi J, Wang X, Zhu Q, Kannan K (2019) Occurrence and distribution of parabens and bisphenols in sediment from northern Chinese coastal areas. Environ Pollut 253:759–767. https://doi.org/10.1016/j.envpol.2019.07.076

    CAS  Article  PubMed  Google Scholar 

  30. Lin M, Liu YH, Chen WW, Wang H, Hu X (2014) Use of bacteria-immobilized cotton fibers to absorb and degrade crude oil. Int Biodeter Biodegr 88:8–12. https://doi.org/10.1016/j.ibiod.2013.11.015

    CAS  Article  Google Scholar 

  31. Liu J, Zhang X, Zhou S, Tao P, Liu J (2007) Purification and characterization of a 4-hydroxybenzoate decarboxylase from Chlamydophila pneumoniae AR39. Curr Microbiol 54(2):102–107. https://doi.org/10.1007/s00284-006-0153-z

    CAS  Article  PubMed  Google Scholar 

  32. Louis LM, Lerro CC, Friesen MC, Andreotti G, Koutros S, Sandler DP, Blair A, Robson MG, Beane Freeman LE (2017) A prospective study of cancer risk among Agricultural Health Study farm spouses associated with personal use of organochlorine insecticides. Environ Health 16(1):95. https://doi.org/10.1186/s12940-017-0298-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Lupa B, Lyon D, Gibbs MD, Reeves RA, Wiegel J (2005) Distribution of genes encoding the microbial non-oxidative reversible hydroxyarylic acid decarboxylases/phenol carboxylases. Genomics 86(3):342–351. https://doi.org/10.1016/j.ygeno.2005.05.002

    CAS  Article  PubMed  Google Scholar 

  34. Maria N, Francesco A, Radmila P, Federica C, Lin SK, Sara P, Roberto V, Chiesa LM (2020) Presence of emerging contaminants in baby food. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 37(1):131–142. https://doi.org/10.1080/19440049.2019.1682686

    CAS  Article  Google Scholar 

  35. Matsui T, Yoshida T, Hayashi T, Nagasawa T (2006) Purification, characterization, and gene cloning of 4-hydroxybenzoate decarboxylase of Enterobacter cloacae P240. Arch Microbiol 186(1):21–29. https://doi.org/10.1007/s00203-006-0117-5

    CAS  Article  PubMed  Google Scholar 

  36. Peng X, Xiong S, Ou W, Wang Z, Tan J, Jin J, Tang C, Liu J, Fan Y (2017) Persistence, temporal and spatial profiles of ultraviolet absorbents and phenolic personal care products in riverine and estuarine sediment of the Pearl River catchment, China. J Hazard Mater 323(Pt A):139–146. https://doi.org/10.1016/j.jhazmat.2016.05.020

    CAS  Article  PubMed  Google Scholar 

  37. Prathibha K, Sumathi S (2008) Biodegradation of mixture containing monohydroxybenzoate isomers by Acinetobacter calcoaceticus. World J Microb Biot 24:813–823. https://doi.org/10.1007/s11274-007-9545-x

    CAS  Article  Google Scholar 

  38. Ren L, Jia Y, Zhang R, Lin Z, Zhen Z, Hu H, Yan Y (2018) Insight into metabolic versatility of an aromatic compounds-degrading Arthrobacter sp. YC-RL1. Front Microbiol 9:2438. https://doi.org/10.3389/fmicb.2018.02438

    Article  PubMed  PubMed Central  Google Scholar 

  39. Saha R, Farrance CE, Verghese B, Hong S, Donofrio RS (2013) Klebsiella michiganensis sp. nov., a new bacterium isolated from a tooth brush holder. Curr Microbiol 66(1):72–78. https://doi.org/10.1007/s00284-012-0245-x

    CAS  Article  PubMed  Google Scholar 

  40. Sannino F, Sansone C, Galasso C, Kildgaard S, Tedesco P, Fani R, Marino G, de Pascale D, Ianora A, Parrilli E, Larsen TO, Romano G, Tutino ML (2018) Pseudoalteromonas haloplanktis TAC125 produces 4-hydroxybenzoic acid that induces pyroptosis in human A459 lung adenocarcinoma cells. Sci Rep 8(1):1190. https://doi.org/10.1038/s41598-018-19536-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Schug TT, Janesick A, Blumberg B, Heindel JJ (2011) Endocrine disrupting chemicals and disease susceptibility. J Steroid Biochem Mol Biol 127(3–5):204–215. https://doi.org/10.1016/j.jsbmb.2011.08.007

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Seo JS, Keum YS, Li QX (2009) Bacterial degradation of aromatic compounds. Int J Environ Res Public Health 6(1):278–309. https://doi.org/10.3390/ijerph6010278

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Singh P, Singh VK, Singh R, Borthakur A, Kumar A, Tiwary D, Mishra PK (2018) Biological degradation of toluene by indigenous bacteria Acinetobacter junii CH005 isolated from petroleum contaminated sites in India. Energy Ecol Environ 3:162–170. https://doi.org/10.1007/s40974-018-0089-8

    Article  Google Scholar 

  44. Su JF, Zheng SC, Huang TI, Ma F, Shao SC, Yang SF, Zhang LN (2015) Characterization of the anaerobic denitrification bacterium Acinetobacter sp. SZ28 and its application for groundwater treatment. Bioresour Technol 192:654–659. https://doi.org/10.1016/j.biortech.2015.06.020

    CAS  Article  PubMed  Google Scholar 

  45. Tahmourespour A, Tabatabaee N, Khalkhali H, Amini I (2016) Tannic acid degradation by Klebsiella strains isolated from goat feces. Iran J Microbiol 8(1):14–20

    PubMed  PubMed Central  Google Scholar 

  46. Tang J, Hu Q, Liu B, Lei D, Chen T, Sun Q, Zeng C, Zhang Q (2019) Efficient biodegradation of 3-phenoxybenzoic acid and pyrethroid pesticides by the novel strain Klebsiella pneumoniae BPBA052. Can J Microbiol 65(11):795–804. https://doi.org/10.1139/cjm-2019-0183

    CAS  Article  PubMed  Google Scholar 

  47. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882. https://doi.org/10.1093/nar/25.24.4876

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Throne-Holst M, Markussen S, Winnberg A, Ellingsen TE, Kotlar HK, Zotchev SB (2006) Utilization of n-alkanes by a newly isolated strain of Acinetobacter venetianus: the role of two AlkB-type alkane hydroxylases. Appl Microbiol Biotechnol 72(2):353–360. https://doi.org/10.1007/s00253-005-0262-9

    CAS  Article  PubMed  Google Scholar 

  49. Tian J, Zhu L, Wang W, Zhang L, Li Z, Zhao Q, Xing K, Feng Z, Peng X (2018) Genomic analysis of Microbulbifer sp. strain A4B–17 and the characterization of its metabolic pathways for 4-hydroxybenzoic acid synthesis. Front Microbiol 9:3115. https://doi.org/10.3389/fmicb.2018.03115

    Article  PubMed  PubMed Central  Google Scholar 

  50. Tierney M, Young LY (2010) Anaerobic degradation of aromatic hydrocarbons. Springer Berlin Heidelberg 925-934 https://doi.org/10.1007/978-3-540-77587-4_65

  51. Varg JE, Dussan J (2017) Encapsulation and immobilization of the S-layer protein of Lysinibacillus sphaericus in an alginate matrix for chromium adsorption. Int Biodeter Biodegr 116:141–146. https://doi.org/10.1016/j.ibiod.2016.10.028

    CAS  Article  Google Scholar 

  52. Wallace SJ, de Solla SR, Head JA, Hodson PV, Parrott JL, Thomas PJ, Berthiaume A, Langlois VS (2020) Polycyclic aromatic compounds (PACs) in the Canadian environment: exposure and effects on wildlife. Environ Pollut. https://doi.org/10.1016/j.envpol.2020.114863

    Article  PubMed  Google Scholar 

  53. Wang L, Liu T, Liu F, Zhang J, Wu Y, Sun H (2015) Occurrence and profile characteristics of the pesticide imidacloprid, preservative parabens, and their metabolites in human urine from rural and urban China. Environ Sci Technol 49(24):14633–14640. https://doi.org/10.1021/acs.est.5b04037

    CAS  Article  PubMed  Google Scholar 

  54. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173(2):697–703. https://doi.org/10.1128/jb.173.2.697-703.1991

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Xu X, Zhou H, Chen X, Wang B, Jin Z, Ji F (2019) Biodegradation potential of polycyclic aromatic hydrocarbons by immobilized Klebsiella sp. in soil washing effluent. Chemosphere 223:140–147. https://doi.org/10.1016/j.chemosphere.2019.01.196

    CAS  Article  PubMed  Google Scholar 

  56. Yin Z, Xia D, Shen M, Zhu D, Cai H, Wu M, Zhu Q, Kang Y (2020) Tetracycline degradation by Klebsiella sp. strain TR5: proposed degradation pathway and possible genes involved. Chemosphere 253:126729. https://doi.org/10.1016/j.chemosphere.2020.126729

    CAS  Article  PubMed  Google Scholar 

  57. Zhang S, Zhang C, Sun F, Zhang Z, Zhang X, Pan H, Sun P, Zhang H (2020) Glutathione-S-transferase (GST) catalyzes the degradation of chlorimuron-ethyl by Klebsiella jilinsis 2N3. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.139075

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zhao J, Zhao X, Chao L, Zhang W, You T, Zhang J (2014) Diversity change of microbial communities responding to zinc and arsenic pollution in a river of northeastern China. J Zhejiang Univ Sci B 15(7):670–680. https://doi.org/10.1631/jzus.B1400003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. Zhao H, Xu Y, Lin S, Spain JC, Zhou NY (2018) The molecular basis for the intramolecular migration (NIH shift) of the carboxyl group during para-hydroxybenzoate catabolism. Mol Microbiol 110(3):411–424. https://doi.org/10.1111/mmi.14094

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (31800327, 32071505, 31570028), Anhui University Natural Science Foundation (KJ2020A0084) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Funding

This study was funded by National Natural Science Foundation of China (31800327, 32071505, 31570028), Anhui University Natural Science Foundation (KJ2020A0084), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Bo Yuan or Zhaozhong Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, P., Huang, H., Sun, Y. et al. Biodegradation of 4-hydroxybenzoic acid by Acinetobacter johnsonii FZ-5 and Klebsiella oxytoca FZ-8 under anaerobic conditions. Biodegradation (2021). https://doi.org/10.1007/s10532-021-09963-w

Download citation

Keywords

  • 4-Hydroxybenzoic acid
  • Biodegradation
  • Anaerobic
  • Acinetobacter johnsonii
  • Klebsiella oxytoca
  • Bioremediation