Skip to main content

Advertisement

Log in

Anaerobic/aerobic conditions and biostimulation for enhanced chlorophenols degradation in biocathode microbial fuel cells

  • Original Article
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Anaerobic/aerobic conditions affected bacterial community composition and the subsequent chlorophenols (CPs) degradation in biocathode microbial fuel cells (MFCs). Bacterial communities acclimated with either 4-chlorophenol (4-CP) or 2,4-dichlorophenol (2,4-DCP) under anaerobiosis can degrade the respective substrates more efficiently than the facultative aerobic bacterial communities. The anaerobic bacterial communities well developed with 2,4-DCP were then adapted to 2,4,6-trichlorophenol (2,4,6-TCP) and successfully stimulated for enhanced 2,4,6-TCP degradation and power generation. A 2,4,6-TCP degradation rate of 0.10 mol/m3/d and a maximum power density of 2.6 W/m3 (11.7 A/m3) were achieved, 138 and 13 % improvements, respectively compared to the controls with no stimulation. Bacterial communities developed with the specific CPs under anaerobic/aerobic conditions as well as the stimulated biofilm shared some dominant genera and also exhibited great differences. These results provide the most convincing evidence to date that anaerobic/aerobic conditions affected CPs degradation with power generation from the biocathode systems, and using deliberate substrates can stimulate the microbial consortia and be potentially feasible for the selection of an appropriate microbial community for the target substrate (e.g. 2,4,6-TCP) degradation in the biocathode MFCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abed RM, Safi NM, Koster J, de Beer D, El-Nahhal Y, Rullkotter J, Garcia-Pichel F (2002) Microbial diversity of a heavily polluted microbial mat and its community changes following degradation of petroleum compounds. Appl Environ Microbiol 68:1674–1683

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arnett CM, Rodriguez G, Maloney SW (2009) Analysis of bacterial community diversity in anaerobic fluidized bed bioreactors treating 2,4-dinitroanisole (DNAN) and n-methyl-4-nitroaniline (MNA) using 16S rRNA gene clone libraries. Microbes Environ 24:72–75

    Article  PubMed  Google Scholar 

  • Aulenta F, Maio VD, Ferri T, Majone M (2010) The humic acid analogue anthraquinone-2,6-disulfonate (AQDS) serves as an electron shuttle in the electricity-driven microbial dechlorination of trichloroethene to cis-dichloroethene. Bioresour Technol 101:9728–9733

    Article  CAS  PubMed  Google Scholar 

  • Baek SH, Kim KH, Yin CR, Jeon CO, Im WT, Kim KK, Lee ST (2003) Isolation and characterization of bacteria capable of degrading phenol and reducing nitrate under low-oxygen conditions. Curr Microbiol 47:462–466

    Article  PubMed  Google Scholar 

  • Butler CS, Clauwaert P, Green SJ, Verstraete W, Nerenberg R (2010) Bioelectrochemical perchlorate reduction in a microbial fuel cell. Environ Sci Technol 44:4685–4691

    Article  CAS  PubMed  Google Scholar 

  • Cai PJ, Xiao X, He YR, Li WW, Zang GL, Sheng GP, Lam MHW, Yu L, Yu HQ (2013) Reactive oxygen species (ROS) generated by cyanobacteria act as an electron acceptor in the biocathode of a bioelectrochemical system. Biosens Bioelectron 39:306–310

    Article  CAS  PubMed  Google Scholar 

  • Cao F, Liu T, Wu C, Li F, Li X, Yu H, Tong H, Chen M (2012) Enhanced biotransformation of DDTs by an iron- and humic-reducing bacteria Aeromonas hydrophila HS01 upon addition of goethite and anthraquinone-2,6-disulphonic disodium salt (AQDS). J Agric Food Chem 60:11238–11244

    Article  CAS  PubMed  Google Scholar 

  • Chandra R, Singh R, Yadav S (2012) Effect of bacterial inoculum ratio in mixed culture for decolourization and detoxification of pulp paper mill effluent. J Chem Technol Biotechnol 87:436–444

    Article  CAS  Google Scholar 

  • Chen Y, Lin CJ, Lan H, Fu S, Zhan H (2010) Changes in pentachlorophenol (PCP) metabolism and physicochemical characteristics by granules responding to different oxygen availability. Environ Prog Sustain Energy 29:307–312

    Article  CAS  Google Scholar 

  • Chen JL, Wang JY, Wu CC, Chiang KY (2011) Electro-catalytic degradation of 2,4-dichlorophenol by granular graphite electrodes. Colloids Surf A 379:163–168

    Article  CAS  Google Scholar 

  • Chen M, Shih K, Hu M, Li F, Liu C, Wu W, Tong H (2012) Biostimulation of indigenous microbial communities for anaerobic transformation of pentachlorophenol in paddy soils of southern China. J Agric Food Chem 60:2967–2975

    Article  CAS  PubMed  Google Scholar 

  • Chen JJ, Chen W, He H, Li DB, Li WW, Xiong L, Yu HQ (2013) Manipulation of microbial extracellular electron transfer by changing molecular structure of phenazine-type redox mediators. Environ Sci Technol 47:1033–1039

    Article  CAS  PubMed  Google Scholar 

  • Cheng IF, Fernando Q, Korte N (1997) Electrochemical dechlorination of 4-chlorophenol to phenol. Environ Sci Technol 31:1074–1078

    Article  CAS  Google Scholar 

  • Cheng KY, Ginige MP, Kaksonen AH (2012) Ano-cathodophilic biofilm catalyzes both anodic carbon oxidation and cathodic denitrification. Environ Sci Technol 46:10372–10378

    CAS  PubMed  Google Scholar 

  • Chun CL, Payne RB, Sowers KR, May HD (2013) Electrical stimulation of microbial PCB degradation in sediment. Water Res 47:141–152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cycon M, Zmijowska A, Piotrowska-Seget Z (2011) Biodegradation kinetics of 2,4-D by bacterial strains isolated from soil. Cent Eur J Biol 6:188–198

    Article  CAS  Google Scholar 

  • De Schamphelaire L, Cabezas A, Marzorati M, Friedrich MW, Boon N, Verstraete W (2010) Microbial community analysis of anodes from sediment microbial fuel cells powered by rhizodeposits of living rice plants. Appl Environ Microbiol 76:2002–2008

    Article  PubMed Central  PubMed  Google Scholar 

  • Desaint S, Hartmann A, Parekh NR, Fournier J (2000) Genetic diversity of carbofuran-degrading soil bacteria. FEMS Microbiol Ecol 34:173–180

    Article  CAS  PubMed  Google Scholar 

  • Ehrenreich P, Behrends A, Harder J, Widdel F (2000) Anaerobic oxidation of alkanes by newly isolated denitrifying bacteria. Arch Microbiol 173:58–64

    Article  CAS  PubMed  Google Scholar 

  • Field JA, Sierra-Alvarez R (2008) Microbial degradation of chlorinated phenols. Rev Environ Sci Biotechnol 7:211–241

    Article  CAS  Google Scholar 

  • Field EK, D’Imperio S, Miller AR, VanEngelen MR, Gerlach R, Lee BD, Apel WA, Peyton BM (2010) Application of molecular techniques to elucidate the influence of cellulosic waste on the bacterial community structure at a simulated low-level-radioactive-waste site. Appl Environ Microbiol 76:3106–3115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Friedrich U, Prior K, Altendorf K, Lipski A (2002) High bacterial diversity of a waste gas-degrading community in an industrial biofilter as shown by a 16S rDNA clone library. Environ Microbiol 4:721–734

    Article  CAS  PubMed  Google Scholar 

  • Futamata H, Nagano Y, Watanabe K, Hiraishi A (2005) Unique kinetic properties of phenol-degrading variovorax strains responsible for efficient trichloroethylene degradation in a chemostat enrichment culture. Appl Environ Microbiol 71:904–911

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gu H, Zhang X, Li Z, Lei L (2007) Studies on treatment of chlorophenol-containing wastewater by microbial fuel cell. Chin Sci Bull 52:3448–3451

    Article  CAS  Google Scholar 

  • Hong X, Zhang X, Liu B, Mao Y, Liu Y, Zhao L (2010) Structural differentiation of bacterial communities in indole-degrading bioreactors under denitrifying and sulfate-reducing conditions. Res Microbiol 161:687–693

    Article  CAS  PubMed  Google Scholar 

  • Huang LP, Cheng SA, Chen GH (2011a) Bioelectrochemical systems for efficient recalcitrant wastes treatment. J Chem Technol Biotechnol 86:481–491

    Article  CAS  Google Scholar 

  • Huang LP, Regan JM, Quan X (2011b) Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells. Bioresour Technol 102:316–323

    Article  CAS  PubMed  Google Scholar 

  • Huang LP, Chai XL, Quan X, Logan BE, Chen GH (2012) Reductive dechlorination and mineralization of pentachlorophenol in biocathode microbial fuel cells. Bioresour Technol 111:167–174

    Article  CAS  PubMed  Google Scholar 

  • Huang LP, Wang Q, Quan X, Liu YX, Chen GH (2013) Bioanodes/biocathodes formed in bioelectrochemical cells at optimal potentials enhance subsequent pentachlorophenol degradation and power generation from microbial fuel cells. Bioelectrochemistry 94:13–22

    Article  CAS  PubMed  Google Scholar 

  • Ishii S, Suzuki S, Norden-Krichmar TM, Wanger G, Nealson KH, Sekiguchi Y, Gorby YA, Bretchger O (2012) Functionally stable and phylogenetically diverse microbial enrichments from microbial fuel cells during wastewater treatment. PLoS One 7:e30495

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jeremiasse AW, Hamelers HVM, Croese E, Buisman CJN (2012) Acetate enhances startup of a H2-producing microbial biocathode. Biotechnol Bioeng 109:657–664

    Article  CAS  PubMed  Google Scholar 

  • Juteau P, Larocque R, Rho D, LeDuy A (1999) Analysis of the relative abundance of different types of bacteria capable of toluene degradation in a compost biofilter. Appl Microbiol Biotechnol 52:863–868

    Article  CAS  PubMed  Google Scholar 

  • Karn SK, Balda S (2013) Bioremediation 2,4,6-trichlorophenol (2,4,6-TCP) by Shigella sp. S2 isolated from industrial dumpsite. Bioremediat J 17:71–78

    Article  CAS  Google Scholar 

  • Karn SK, Reddy MS (2012) Degradation of 2,4,6-trichlorophenol by bacteria isolated from secondary sludge of a pulp and paper mill. J Gen Appl Microbiol 58:413–420

    Article  CAS  PubMed  Google Scholar 

  • Kiely PD, Call DF, Yates MD, Regan JM, Logan BE (2010) Anodic biofilms in microbial fuel cells harbor low numbers of higher-power-producing bacteria than abundant genera. Appl Microbiol Biotechnol 88:371–380

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Kim YS, Kim SK, Kim SW, Zylstra GJ, Kim YM, Kim E (2002) Monocyclic aromatic hydrocarbon degradation by Rhodococcus sp. strain DK17. Appl Environ Microbiol 68:3270–3278

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim GT, Webster G, Wimpenny JW, Kim BH, Kim HJ, Weightman AJ (2006) Bacterial community structure, compartmentalization and activity in a microbial fuel cell. J Appl Microbiol 101:698–710

    Article  CAS  PubMed  Google Scholar 

  • Kraigher B, Kosjek T, Heath E, Kompare B, Mandic-Mulec I (2008) Influence of pharmaceutical residues on the structure of activated sludge bacterial communities in wastewater treatment bioreactors. Water Res 42:4578–4588

    Article  CAS  PubMed  Google Scholar 

  • Krumins V, Park JW, Son EK, Rodenburg LA, Kerkhof LJ, Häggblom MM, Fennell DE (2009) PCB dechlorination enhancement in Anacostia river sediment microcosms. Water Res 43:4549–4558

    Article  CAS  PubMed  Google Scholar 

  • Li WW, Yu HQ (2011) From wastewater to bioenergy and biochemicals via two-stage bioconversion processes: a future paradigm. Biotechnol Adv 29:972–982

    Article  CAS  PubMed  Google Scholar 

  • Li D, Yang M, Hu J, Zhang J, Liu R, Gu X, Zhang Y, Wang Z (2009) Antibiotic-resistance profile in environmental bacteria isolated from penicillin production wastewater treatment plant and the receiving river. Environ Microbiol 11:1506–1517

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Yang S, Inoue Y, Yoshida N, Katayama A (2010) Complete anaerobic mineralization of pentachlorophenol (PCP) under continuous flow conditions by sequential combination of PCP-dechlorinating and phenol-degrading consortia. Biotechnol Bioeng 107:775–785

    Article  CAS  PubMed  Google Scholar 

  • Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7:375–381

    Article  CAS  PubMed  Google Scholar 

  • Logan BE (2012) Essential data and techniques for conducting microbial fuel cell and other types of bioelectrochemical system experiments. ChemSusChem 15:988–994

    Article  Google Scholar 

  • Logan BE, Rabaey K (2012) Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337:686–690

    Article  CAS  PubMed  Google Scholar 

  • May HD, Miller GS, Kjellerup BV, Sowers KR (2008) Dehalorespiration with polychlorinated biphenyls by an anaerobic ultramicrobacterium. Appl Environ Microbiol 74:2089–2094

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Milia S, Cappai G, De Gioannis G, Carucci A (2011) Effects of the cometabolite/growth substrate ratio on the aerobic degradation of 4-monochlorophenol. Water Sci Technol 63:311–317

    Article  CAS  PubMed  Google Scholar 

  • Mun CH, Ng WJ, He J (2008) Acidogenic sequencing batch reactor start-up procedures for induction of 2,4,6-trichlorophenol dechlorination. Water Res 42:1675–1683

    Article  CAS  PubMed  Google Scholar 

  • Murcia MD, Gomez M, Gomez E, Gomez JL, Sinada FA, Christofi N (2012) Testing a Pseudomonas putida strain for 4-chlorophenol degradation in the presence of glucose. Desalin Water Treat 40:33–37

    Article  CAS  Google Scholar 

  • Papazi A, Kotzabasis K (2013) “Rational” management of dichlorophenols biodegradation by the microalga Scenedesmus obliquus. PLoS One 8:e61682

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Park JW, Krumins V, Kjellerup BV, Fennell DE, Rodenburg LA, Sowers KR, Kerkhof LJ, Häggblom MM (2011) The effect of co-substrate activation on indigenous and bioaugmented PCB dechlorinating bacterial communities in sediment microcosms. Appl Microbiol Biotechnol 89:2005–2017

    Article  CAS  PubMed  Google Scholar 

  • Perkins SD, Scalfone NB, Angenent LT (2011) Comparative 16S rRNA gene surveys of granular sludge from three upflow anaerobic bioreactors treating purified terephthalic acid (PTA) wastewater. Water Sci Technol 64:1406–1412

    Article  CAS  PubMed  Google Scholar 

  • Podmirseg SM, Schoen MA, Murthy S, Insam H, Wett B (2010) Quantitative and qualitative effects of bioaugmentation on ammonia oxidisers at a two-step WWTP. Water Sci Technol 61:1003–1009

    Article  CAS  PubMed  Google Scholar 

  • Puyol D, Mohedano AF, Rodriguez JJ, Sanz JL (2011) Effect of 2,4,6-trichlorophenol on the microbial activity of adapted anaerobic granular sludge bioaugmented with Desulfitobacterium strains. New Biotechnol 29:79–89

    Article  CAS  Google Scholar 

  • Radjenovic J, Flexer V, Donose BC, Sedlak DL, Keller J (2013) Removal of the X-ray contrast media diatrizoate by electrochemical reduction and oxidation. Environ Sci Technol 47(23):13686–13694

    Article  CAS  PubMed  Google Scholar 

  • Shehab N, Li D, Amy GL, Logan BE, Saikaly PE (2013) Characterization of bacterial and archaeal communities in air-cathode microbial fuel cells, open circuit and sealed-off reactors. Appl Microbiol Biotechnol 97:9885–9895

    Article  CAS  PubMed  Google Scholar 

  • Singleton DR, Sangaiah R, Gold A, Ball LM, Aitken MD (2006) Identification and quantification of uncultivated Proteobacteria associated with pyrene degradation in a bioreactor treating PAH-contaminated soil. Environ Microbiol 8:1736–1745

    Article  CAS  PubMed  Google Scholar 

  • Sponza DT, Ulukoy AE (2005) Treatment of 2,4-dichlorophenol (DCP) in a sequential anaerobic (upflow anaerobic sludge blanket) aerobic (completely stirred tank) reactor system. Process Biochem 40:3419–3428

    Article  CAS  Google Scholar 

  • Strycharz SM, Gannon SM, Boles AR, Nevin KP, Franks AE, Lovley DR (2010) Anaeromyxobacter dehalogens interacts with a poised graphite electrode for reductive dechlorination of 2-chlorophenol. Environ Microbiol Rep 2:289–294

    Article  CAS  PubMed  Google Scholar 

  • Stuart SL, Woods SL, Lemmon TL, Ingle JD (1999) The effect of redox potential changes on reductive dechlorination of pentachlorophenol and the degradation of acetate by a mixed, methanogenic culture. Biotechnol Bioeng 63:69–78

    Article  CAS  PubMed  Google Scholar 

  • Sun M, Yan F, Zhang R, Reible D, Lowry G, Gregory K (2010) Redox control and hydrogen production in sediment caps using carbon cloth electrodes. Environ Sci Technol 44:8209–8215

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun YM, Wei JC, Liang P, Huang X (2012) Microbial community analysis in biocathode microbial fuel cells packed with different materials. AMB Express 2:21

    Article  PubMed Central  PubMed  Google Scholar 

  • Tandukar M, Huber SJ, Onodera T, Pavlostathis SG (2009) Biological chromium (VI) reduction in the cathode of a microbial fuel cell. Environ Sci Technol 43:8159–8165

    Article  CAS  PubMed  Google Scholar 

  • Ter Heijne A, Liu F, Van der Weijden R, Weijma J, Buisman CJN, Hamelers HVM (2010) Copper recovery combined with electricity production in a microbial fuel cell. Environ Sci Technol 44:4376–4381

    Article  PubMed  Google Scholar 

  • Thavamani P, Malik S, Beer M, Megharaj M, Naidu R (2012) Microbial activity and diversity in long-term mixed contaminated soils with respect to polyaromatic hydrocarbons and heavy metals. J Environ Manage 99:10–17

    Article  CAS  PubMed  Google Scholar 

  • Tyagi M, da Fonseca MMR, de Carvalho CCCR (2011) Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22:231–241

    Article  CAS  PubMed  Google Scholar 

  • Udikovic-Kolic N, Devers-Lamrani M, Petric I, Hrsak D, Martin-Laurent F (2011) Evidence for taxonomic and functional drift of an atrazine-degrading culture in response to high atrazine input. Appl Microbiol Biotechnol 90:1547–1554

    Article  CAS  PubMed  Google Scholar 

  • van der Zaan BM, Saia FT, Stams AJM, Plugge CM, de Vos WM, Smidt H, Langenhoff AAM, Gerritse J (2012) Anaerobic benzene degradation under denitrifying conditions: peptococcaceae as dominant benzene degraders and evidence for a syntrophic process. Environ Microbiol 14:1171–1181

    Article  PubMed  Google Scholar 

  • Verhagen P, De Gelder L, Hoefman S, De Vos P, Boon N (2011) Planktonic versus biofilm catabolic communities: importance of the biofilm for species selection and pesticide degradation. Appl Environ Microbiol 77:4728–4735

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wen Q, Yang T, Wang S, Chen Y, Cong L, Qu Y (2013) Dechlorination of 4-chlorophenol to phenol in bioelectrochemical systems. J Hazard Mater 244–245:743–749

    Article  PubMed  Google Scholar 

  • Winfield J, Ieropoulos I, Rossiter J, Greenman J, Patton D (2013) Biodegradation and proton exchange using natural rubber in microbial fuel cells. Biodegradation. doi:10.1007/s10532-013-9621-x

    PubMed  Google Scholar 

  • Wrighton KC, Virdis B, Clauwaert P, Read ST, Daly RA, Boon N, Piceno Y, Andersen GL, Coates JD, Rabaey K (2010) Bacterial community structure corresponds to performance during cathodic nitrate reduction. ISME J 4:1443–1455

    Article  CAS  PubMed  Google Scholar 

  • Xia X, Sun Y, Liang P, Huang X (2012) Long-term effect of set potential on biocathodes in microbial fuel cells: electrochemical and phylogenetic characterization. Bioresour Technol 120:26–33

    Article  CAS  PubMed  Google Scholar 

  • Xia X, Tokash JC, Zhang F, Liang P, Huang X, Logan BE (2013) Oxygen-reducing biocathodes operating with passive oxygen transfer in microbial fuel cells. Environ Sci Technol 47:2085–2091

    Article  CAS  PubMed  Google Scholar 

  • Yoshie S, Makino H, Hirosawa H, Shirotani K, Tsuneda S, Hirata A (2006) Molecular analysis of halophilic bacterial community for high-rate denitrification of saline industrial wastewater. Appl Microbiol Biotechnol 72:182–189

    Article  CAS  PubMed  Google Scholar 

  • Yuan SJ, He H, Sheng GP, Chen JJ, Tong ZH, Cheng YY, Li WW, Lin ZQ, Zhang F, Yu HQ (2013) A photometric high-throughput method for identification of electrochemically active bacteria using a WO3 nanocluster probe. Sci Rep 3:1315

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu X, Tokash JC, Hong Y, Logan BE (2013) Controlling the occurrence of power overshoot by adapting microbial fuel cells to high anode potentials. Bioelectrochemistry 90:30–35

    Article  CAS  PubMed  Google Scholar 

  • Ziemer CJ, Kerr BJ, Trabue SL, Stein H, Stahl DA, Davidson SK (2009) Dietary protein and cellulose effects on chemical and microbial characteristics of swine feces and stored manure. J Environ Quality 38:2138–2146

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the Natural Science Foundation of China (Nos. 21077017 and 51178077) and Specialized Research Fund for the Doctoral Program of Higher Education “SRFDP” (No. 20120041110026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liping Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, L., Shi, Y., Wang, N. et al. Anaerobic/aerobic conditions and biostimulation for enhanced chlorophenols degradation in biocathode microbial fuel cells. Biodegradation 25, 615–632 (2014). https://doi.org/10.1007/s10532-014-9686-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-014-9686-1

Keywords

Navigation