Skip to main content
Log in

Molecular characterization of mesophilic and thermophilic sulfate reducing microbial communities in expanded granular sludge bed (EGSB) reactors

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

The microbial communities established in mesophilic and thermophilic expanded granular sludge bed reactors operated with sulfate as the electron acceptor were analyzed using 16S rRNA targeted molecular methods, including denaturing gradient gel electrophoresis, cloning, and phylogenetic analysis. Bacterial and archaeal communities were examined over 450 days of operation treating ethanol (thermophilic reactor) or ethanol and later a simulated semiconductor manufacturing wastewater containing citrate, isopropanol, and polyethylene glycol 300 (mesophilic reactor), with and without the addition of copper(II). Analysis, of PCR-amplified 16S rRNA gene fragments using denaturing gradient gel electrophoresis revealed a defined shift in microbial diversity in both reactors following a change in substrate composition (mesophilic reactor) and in temperature of operation from 30°C to 55°C (thermophilic reactor). The addition of copper(II) to the influent of both reactors did not noticeably affect the composition of the bacterial or archaeal communities, which is in agreement with the very low soluble copper concentrations (3–310 μg l−1) present in the reactor contents as a consequence of extensive precipitation of copper with biogenic sulfides. Furthermore, clone library analysis confirmed the phylogenetic diversity of sulfate-reducing consortia in mesophilic and thermophilic sulfidogenic reactors operated with simple substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bak F, Pfennig N (1987) Chemolithotrophic growth of Desulfovibrio sulfodismutans sp. nov. by disproportionation of inorganic sulfur-compounds. Arch Microbiol 147:184–189

    Article  CAS  Google Scholar 

  • Ben-Amor K, Heilig H, Smidt H et al (2005) Genetic diversity of viable, injured, and dead fecal bacteria assessed by fluorescence-activated cell sorting and 16S rRNA gene analysis. Appl Environ Microbiol 71:4679–4689

    Article  CAS  Google Scholar 

  • Boyd JM, Ellsworth H, Ensign SA (2004) Bacterial acetone carboxylase is a manganese-dependent metalloenzyme. J Biol Chem 279:46644–46651

    Article  CAS  Google Scholar 

  • Burggraf S, Jannasch HW, Nicolaus B et al (1990) Archaeoglobus profundus sp. nov, represents a new species within the sulfate-reducing archaebacteria. Syst Appl Microbiol 13:24–28

    Google Scholar 

  • Chauhan A, Ogram A (2006) Fatty acid-oxidizing consortia along a nutrient gradient in the Florida Everglades. Appl Environ Microbiol 72:2400–2406

    Article  CAS  Google Scholar 

  • Clesceri LS, Greenberg AE, Eaton AD (eds) (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington, DC

    Google Scholar 

  • Dahle H, Birkeland NK (2006) Thermovirga lienii gen. nov., sp nov., a novel moderately thermophilic, anaerobic, amino-acid-degrading bacterium isolated from a North Sea oil well. Int J Syst Evol Microbiol 56:1539–1545

    Article  CAS  Google Scholar 

  • Dar SA, Yao L, Van Dongen U et al (2007) Diversity and activity of sulfate reducing bacterial communities in sulfidogenic bioreactors using 16S rRNA and dsrB genes as molecular markers. Appl Environ Microbiol 73:594–604

    Article  CAS  Google Scholar 

  • Daumas S, Cordruwisch R, Garcia JL (1988) Desulfotomaculum geothermicum sp. nov., a thermophilic, fatty acid-degrading, sulfate-reducing bacterium isolated with H2 from geothermal ground-water. Anton Leeuwen 54:165–178

    Article  CAS  Google Scholar 

  • Davies R, Stephenson M (1941) Studies on the acetone-butyl-alcohol fermentation. 1. Nutritional and other factors involved in the preparation of active suspensions of Clostridium acetobutylicum (Weizmann). Biochem J 35:1320–1331

    CAS  Google Scholar 

  • Dwyer D, Tiedje J (1986) Metabolism of polyethylene glycol by two anaerobic bacteria, Desulfovibrio desulfuricans and a Bacteroides sp. Appl Environ Microbiol 52:852–856

    CAS  Google Scholar 

  • Egert M, Wagner B, Lemke T, Brune A et al (2003) Microbial community structure in midgut and hindgut of the humus-feeding larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae). Appl Environ Microbiol 69:6659–6668

    Article  CAS  Google Scholar 

  • Ekiel I, Sprott GD, Patel GB (1985) Acetate and CO2 assimilation by Methanothrix concilii. J Bacteriol 162:905–908

    CAS  Google Scholar 

  • Ensign SA, Small FJ, Allen JR, Sluis MK (1998) New roles for CO2 in the microbial metabolism of aliphatic epoxides and ketones. Arch Microbiol 169:179–187

    Article  CAS  Google Scholar 

  • Fardeau ML, Salinas MB, L’Haridon S et al (2004) Isolation from oil reservoirs of novel thermophilic anaerobes phylogenetically related to Thermoanaerobacter subterraneus: reassignment of T. subterraneus, Thermoanaerobacter yonseiensis, Thermoanaerobacter tengcongensis and Carboxydibrachium pacificum to Caldanaerobacter subterraneus gen. nov., sp nov., comb. nov. as four novel subspecies. Int J Syst Evol Microbiol 54:467–474

    Article  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence-limits on phylogenies – an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Felske A, Wolterink A, Van Lis R, Akkermans ADL (1998) Phylogeny of the main bacterial 16S rRNA sequences in Drentse A grassland soils (The Netherlands). Appl Environ Microbiol 64:871–879

    CAS  Google Scholar 

  • Fukui M, Teske A, Assmus B et al (1999) Physiology, phylogenetic relationships, and ecology of filamentous sulfate-reducing bacteria (genus Desulfonema). Arch Microbiol 172:193–203

    Article  CAS  Google Scholar 

  • Garcia JL (1990) Taxonomy and ecology of methanogens. Fems Microbiol Rev 87:297–308

    Article  Google Scholar 

  • Grosskopf R, Janssen PH, Liesack W (1998) Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval. Appl Environ Microbiol 64:960–969

    CAS  Google Scholar 

  • Hattori S, Kamagata Y, Hanada S et al (2000) Thermacetogenium phaeum gen. nov., sp nov., a strictly anaerobic, thermophilic, syntrophic acetate-oxidizing bacterium. Int J Syst Evol Microbiol 50:1601–1609

    CAS  Google Scholar 

  • Henry EA, Devereux R, Maki JS et al (1994) Characterization of a new thermophilic sulfate-reducing bacterium – Thermodesulfovibrio yellowstonii, gen. nov. and sp. nov. – its phylogenetic relationship to Thermodesulfobacterium commune and their origins deep within the bacterial domain. Arch Microbiol 161:62–69

    Article  CAS  Google Scholar 

  • Hernandez-Eugenio G, Fardeau ML, Patel BKC et al (2000) Desulfovibrio mexicanus sp nov., a sulfate-reducing bacterium isolated from an upflow anaerobic sludge blanket (UASB) reactor treating cheese wastewaters. Anaerobe 6:305–312

    Article  CAS  Google Scholar 

  • Hollingsworth J, Sierra-Alvarez R, Zhou M et al (2005) Anaerobic biodegradability and methanogenic toxicity of key constituents in copper chemical mechanical planarization effluents of the semiconductor industry. Chemosphere 59:1219–1228

    Article  CAS  Google Scholar 

  • Hoover RB, Pikuta EV, Bej AK et al (2003) Spirochaeta americana sp nov., a new haloalkallphilic, obligately anaerobic spirochaete isolated from soda Mono Lake in California. Int J Syst Evol Microbiol 53:815–821

    Article  CAS  Google Scholar 

  • Janssen PH, Schink B (1995a) Catabolic and anabolic enzyme-activities and energetics of acetone metabolism of the sulfate-reducing bacterium Desulfococcus biacutus. J Bacteriol 177:277–282

    CAS  Google Scholar 

  • Janssen PH, Schink B. 1995b. Metabolic pathways and energetics of the acetone-oxidizing, sulfate-reducing bacterium, Desulfobacterium cetonicum. Arch Microbiol 163:188–194

    Article  CAS  Google Scholar 

  • Jiang B, Parshina SN, van Doesburg W et al (2005) Methanomethylovorans thermophila sp nov., a thermophilic, methylotrophic methanogen from an anaerobic reactor fed with methanol. Int J Syst Evol Microbiol 55:2465–2470

    Article  CAS  Google Scholar 

  • Joulian C, Patel BKC, Ollivier B et al (2000) Methanobacterium oryzae sp nov., a novel methanogenic rod isolated from a Philippines ricefield. Int J Syst Evol Microbiol 50:525–528

    Google Scholar 

  • Kaksonen AH, Plumb JJ, Franzmann PD et al (2004) Simple organic electron donors support diverse sulfate-reducing communities in fluidized-bed reactors treating acidic metal- and sulfate-containing wastewater. Fems Microbiol Ecol 47:279–289

    Article  CAS  Google Scholar 

  • Karri S, Sierra-Alvarez R, Field JA (2006) Toxicity of copper to acetoclastic and hydrogenotrophic activities of methanogens and sulfate reducers in anaerobic sludge. Chemosphere 62:121–127

    Article  CAS  Google Scholar 

  • Kashefi k, Holmes DE, Baross JA et al (2003) Thermophily in the Geobacteraceae: Geothermobacter ehrlichii gen. nov., sp. nov., a novel thermophilic member of the Geobacteraceae from the “Bag City” hydrothermal vent. Appl Environ Microbiol 69:2985–2993

    Article  CAS  Google Scholar 

  • Konstantinov SR, Awati AA, Williams BA et al (2006) Post-natal development of the porcine microbiota composition and activities. Environ Microbiol 8:1191–1199

    Article  CAS  Google Scholar 

  • Lane D (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley & Sons Ltd, Chichester, UK, pp 115–175

    Google Scholar 

  • Leclerc M, Delgenes JP, Godon JJ (2004) Diversity of the archaeal community in 44 anaerobic digesters as determined by single strand conformation polymorphism analysis and 16S rDNA sequencing. Environ Microbiol 6:809–819

    Article  CAS  Google Scholar 

  • Lens PNL, Visser A, Janssen AJH et al (1998) Biotechnological treatment of sulfate-rich wastewaters. Crit Rev Environ Sci Technol 28:41–88

    Article  CAS  Google Scholar 

  • Liu JR, Tanner RS, Schumann P et al (2002) Emended description of the genus Trichococcus, description of Trichococcus collinsii sp nov., and reclassification of Lactosphaera pasteurii as Trichococcus pasteurii comb. nov and of Ruminococcus palustris as Trichococcus palustris comb. nov in the low-G+C Gram-positive bacteria. Int J Syst Evol Microbiol 52:1113–1126

    Article  CAS  Google Scholar 

  • Lomans BP, Maas R, Luderer R, den Camp H et al (1999) Isolation and characterization of Methanomethylovorans hollandica gen. nov., sp nov., isolated from freshwater sediment, a methylotrophic methanogen able to grow on dimethyl sulfide and methanethiol. Appl Environ Microbiol 65:3641–3650

    CAS  Google Scholar 

  • Ludwig W, Strunk O, Westram R et al (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

    Article  CAS  Google Scholar 

  • Ma K, Liu XL, Dong XZ (2005) Methanobacterium beijingense sp nov., a. novel methanogen isolated from anaerobic digesters. Int J Syst Evol Microbiol 55:325–329

    Article  CAS  Google Scholar 

  • Ma K, Liu XL, Dong XZ (2006) Methanosaeta harundinacea sp nov., a novel acetate-scavenging methanogen isolated from a UASB reactor. Int J Syst Evol Microbiol 56:127–131

    Article  CAS  Google Scholar 

  • McGinnis S, Madden TL (2004) BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res 32:W20–W25

    Article  CAS  Google Scholar 

  • Muyzer G, Dewaal EC, Uitterlinden AG (1993) Profiling of complex microbial-populations by denaturing gradient gel-electrophoresis analysis of polymerase chain reaction-amplified genes-coding for 16S ribosomal RNA. Appl Environ Microbiol 59:695–700

    CAS  Google Scholar 

  • Nanninga HJ, Gottschal JC (1987) Properties of Desulfovibrio carbinolicus sp. nov. and other sulfate-reducing bacteria isolated from an anaerobic-purification plant. Appl Environ Microbiol 53:802–809

    CAS  Google Scholar 

  • Nubel U, Engelen B, Felske A et al (1996) Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol 178:5636–5643

    CAS  Google Scholar 

  • O’Flaherty V, Colleran E (1999) Effect of sulphate addition on volatile fatty acid and ethanol degradation in an anaerobic hybrid reactor. I: process disturbance and remediation. Bioresource Technol 68:101–107

    Article  CAS  Google Scholar 

  • Oude-Elferink S, Luppens SBI, Marcelis CLM et al (1998) Kinetics of acetate oxidation by two sulfate reducers isolated from anaerobic granular sludge. Appl Environ Microbiol 64:2301–2303

    Google Scholar 

  • Patel GB, Sprott GD (1990) Methanosaeta concilii gen. nov, sp. nov (Methanothrix concilii) and Methanosaeta thermoacetophila nom. rev, comb. nov. Int J Syst Bacteriol 40:79–82

    Article  Google Scholar 

  • Platen H, Temmes A, Schink B (1990) Anaerobic dgradation of acetone by Desulfococcus biacutus spec. nov. Arch Microbiol 154:355–361

    Article  CAS  Google Scholar 

  • Platen H, Schink B (1987) Methanogenic degradation of acetone by an enrichment culture. Arch Microbiol 149:136–141

    Article  CAS  Google Scholar 

  • Platen H, Schink B (1989) Anaerobic degradation of acetone and higher ketones by newly isolated denitrifying bacteria. J Gen Microbiol 135:883–891

    CAS  Google Scholar 

  • Roest K, Altinbas M, Paulo PL et al (2005a) Enrichment and detection of microorganisms involved in direct and indirect methanogenesis from methanol in an anaerobic thermophilic bioreactor. Microb Ecol 50:440–446

    Article  CAS  Google Scholar 

  • Roest K, Heilig H, Smidt H et al (2005b) Community analysis of a full-scale anaerobic bioreactor treating paper mill wastewater. Syst Appl Microbiol 28:175–185

    Article  CAS  Google Scholar 

  • Scheff G, Salcher O, Lingens F (1984) Trichococcus flocculiformis gen nov. sp. nov. a new Gram-positive filamentous bacterium isolated from bulking sludge. Appl Microbiol Biotechnol 19:114–119

    Article  CAS  Google Scholar 

  • Schink B, Stieb M (1983) Fermentative degradation of polyethylene glycol by a strictly anaerobic, gram-negative, non-sporeforming bacterium, Pelobacter venetianus sp. nov. Appl Environ Microbiol 45:1905–1913

    CAS  Google Scholar 

  • Schramm E, Schink B (1991) Ether-cleaving enzyme and diol dehydratase involved in anaerobic polyethylene glycol degradation by a new Acetobacterium sp. Biodegradation 2:71–79

    Article  CAS  Google Scholar 

  • Schuppert B, Schink B (1990) Fermentation of methoxyacetate to glycolate and acetate by newly isolated strains of Acetobacterium sp. Arch Microbiol 153:200–204

    Article  CAS  Google Scholar 

  • Stahl DA, Fishbain S, Klein M et al (2002) Origins and diversification of sulfate-respiring microorganisms. Antonie Leeuwen 81:189–195

    Article  CAS  Google Scholar 

  • Stetter KO, Huber R, Blochl E et al (1993) yperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature 365:743–745

    Article  Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters, 3rd edn. John Wiley & Sons, Inc, New York, USA

    Google Scholar 

  • Tanaka K, Pfennig N (1988) Fermentation of 2-methoxyethanol by Acetobacterium malicum sp. nov. and Pelobacter venetianus. Arch Microbiol 149:181–187

    Article  CAS  Google Scholar 

  • Trüper HG, Schlegel HG (1964) Sulphur metabolism in thiorhodaceae: quantitative measurements on growing cells of Chromatium okenii. Antonie Leeuwen 30:225–238

    Article  Google Scholar 

  • Utgikar VP, Chen BY, Chaudhary N, Tabak HH, Haines JR, Govind R (2001) Environ. Toxicol Chem 20:2662–2669

    Article  CAS  Google Scholar 

  • Visser A, Nozhevnikova AN, Lettinga G (1993) Sulfide inhibition of methanogenic activity at various pH levels at 55°C. J Chem Technol Biotechnol 57:9–13

    Article  CAS  Google Scholar 

  • Wagener S, Schink B (1988) Fermentative degradation of nonionic surfactants and polyethylene-glycol by enrichment cultures and by pure cultures of homoacetogenic and propionate-forming bacteria. Appl Environ Microbiol 54:561–565

    CAS  Google Scholar 

  • Wagner R (1994) The regulation of ribosomal RNA synthesis and bacterial cell growth. Arch Microbiol 161:100–109

    Article  CAS  Google Scholar 

  • Widdel F (1986) Growth of methanogenic bacteria in pure culture with 2-propanol and other alcohols as hydrogen donors. Appl Environ Microbiol 51:1056–1062

    CAS  Google Scholar 

  • Yamada T, Sekiguchi Y, Imachi H et al (2005) Diversity, localization, and physiological properties of filamentous microbes belonging to Chloroflexi subphylum I in mesophilic and thermophilic methanogenic sludge granules. Appl Environ Microbiol 71:7493–7503

    Article  CAS  Google Scholar 

  • Yamada T, Sekiguchi Y, Hanada S et al (2006) Anaerolinea thermolimosa sp nov., Levilinea saccharolytica gen. nov., sp nov and Leptolinea tardivitalis gen. nov., so. nov., novel filamentous anaerobes, and description of the new classes Anaerolineae classis nov and Caldilineae classis nov in the bacterial phylum Chloroflexi. Int J Sys Evol Microbiol 56:1331–1340

    Article  CAS  Google Scholar 

  • Zeikus JG, Wolfe RS (1972) Methanobacterium thermoautotrophicus sp n, an anaerobic, autotrophic, extreme thermophile. J Bacteriol 109:707–713

    CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the National Institute of Health (NIH grant TW00036) and the NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing is acknowledged. M.A. was supported by fellowships from the Scientific and Technical Research Council of Turkey, and the Wageningen Institute for Environment and Climate Research. R.S.A. was supported by the National Science Foundation (NSF-0137368). We are thankful to Hans G.H.J. Heilig for his excellent assistance with DGGE analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reyes Sierra-Alvarez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freeman, S.A., Sierra-Alvarez, R., Altinbas, M. et al. Molecular characterization of mesophilic and thermophilic sulfate reducing microbial communities in expanded granular sludge bed (EGSB) reactors. Biodegradation 19, 161–177 (2008). https://doi.org/10.1007/s10532-007-9123-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-007-9123-9

Keywords

Navigation