How Iberian are we? Mediterranean climate determines structure and endemicity of spider communities in Iberian oak forests

Abstract

Understanding the causes behind species richness and endemicity is fundamental to explain biodiversity and assist conservation management, especially in biodiversity hotspots like the Mediterranean Basin. Here we investigate the patterns in Iberian forest spider communities and the processes behind their assembly, by testing hypotheses about the effects of climate and habitat on species richness, endemicity and structure of communities at different spatial scales, and about how microhabitat and dispersal affect the level of endemicity of species. We studied 16 spider communities in Iberian Quercus forests from different climatic zones, applying a standardised sampling protocol. We examined the contribution of habitat, climate, and geography to the differences in the composition of spider communities across spatial scales using distance-based redundancy analysis models (dbRDA) and principal coordinates of neighbour matrices (PCNM). We assessed the effects of the same variables on the endemicity of communities (measured by a weighted index), and tested the correlation between the microhabitat and the ballooning frequency (obtained from bibliography), and the endemicity of species through generalised linear models. Spider communities formed two groups—one southern and one northern—based on similarity in species composition. Precipitation and temperature were inversely related with the number of species while geography and forest type explained the compositional similarities between communities at different spatial scales. Endemicity of communities increased with temperature and decreased with precipitation, whereas species endemicity decreased with ballooning frequency. Our findings illustrate how niche-related processes may drive spider diversity while dispersal determines species distribution and identity and, ultimately, community composition. From a conservation viewpoint, when maximising species richness is incompatible with prioritising endemicity, the criteria to follow may depend on the geographic scale at which decisions are made.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Abellán P, Svenning JC (2014) Refugia within refugia—patterns in endemism and genetic divergence are linked to Late Quaternary climate stability in the Iberian Peninsula. Biol J Linn Soc 113:13–28. https://doi.org/10.1111/bij.12309

    Article  Google Scholar 

  2. Acácio V, Holmgren M, Rego F et al (2009) Are drought and wildfires turning Mediterranean cork oak forests into persistent shrublands? Agrofor Syst 76:389–400. https://doi.org/10.1007/s10457-008-9165-y

    Article  Google Scholar 

  3. Araújo MB, Lobo JM, Moreno JC (2007) The effectiveness of Iberian protected areas in conserving terrestrial biodiversity. Conserv Biol 21:1423–1432. https://doi.org/10.1111/j.1523-1739.2007.00827.x

    Article  PubMed  Google Scholar 

  4. Barnard P, Brown CJ, Jarvis AM et al (1998) Extending the Namibian protected area network to safeguard hotspots of endemism and diversity. Biodivers Conserv 7:531–547. https://doi.org/10.1023/A:1008831829574

    Article  Google Scholar 

  5. Basset Y, Cizek L, Cuénoud P et al (2012) Arthropod diversity in a tropical forest. Science 338:1481–1484. https://doi.org/10.1126/science.1226727

    CAS  Article  Google Scholar 

  6. Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using {lme4}. J Stat Softw 67:1–48. https://doi.org/10.18637/jss.v067.i01

    Article  Google Scholar 

  7. Bell JR, Bohan DA, Shaw EM, Weyman GS (2005) Ballooning dispersal using silk: world fauna, phylogenies, genetics and models. Bull Entomol Res 95:69–114

    CAS  Article  Google Scholar 

  8. Bilton DT, Mirol PM, Mascheretti S et al (1998) Mediterranean Europe as an area of endemism for small mammals rather than a source for northwards postglacial colonization. Proc R Soc B 265:1219–1226. https://doi.org/10.1098/rspb.1998.0423

    CAS  Article  PubMed  Google Scholar 

  9. Blondel J, Aronson J (1999) Biology and wildlife of the Mediterranean region. Oxford University Press, Oxford

    Google Scholar 

  10. Blondel J, Aronson J, Bodiou J et al (2010) The Mediterranean region: biological diversity in space and time. Oxford University Press, Oxford

    Google Scholar 

  11. Bolger DT, Beard KH, Suarez AV, Case TJ (2008) Increased abundance of native and non-native spiders with habitat fragmentation. Divers Distrib 14:655–665. https://doi.org/10.1111/j.1472-4642.2008.00470.x

    Article  Google Scholar 

  12. Bonache J, De Mingo-Sancho G, Serrada J et al (2016) El seguimiento y la evaluación a largo plazo en la Red española de Parques Nacionales. Ecosistemas 25:31–48. https://doi.org/10.7818/ECOS.2016.25-1.05

    Article  Google Scholar 

  13. Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055

    Article  Google Scholar 

  14. Borcard D, Legendre P, Avois-Jacquet C, Tuomisto H (2004) Dissecting the spatial structure of ecological data at multiple scales. Ecology 85:1826–1832. https://doi.org/10.1890/03-3111

    Article  Google Scholar 

  15. Brooks TM, Mittermeier RA, da Fonseca GAB et al (2009) Global biodiversity conservation priorities. Science 313:58–61. https://doi.org/10.1126/science.1127609

    CAS  Article  Google Scholar 

  16. Cardoso P (2009) Standardization and optimization of arthropod inventories—the case of Iberian spiders. Biodivers Conserv 18:3949–3962. https://doi.org/10.1007/s10531-009-9690-7

    Article  Google Scholar 

  17. Cardoso P, Rigal F, Carvalho JC (2015) BAT—Biodiversity Assessment Tools, an R package for the measurement and estimation of alpha and beta taxon, phylogenetic and functional diversity. Methods Ecol Evol 6:232–236. https://doi.org/10.1111/2041-210X.12310

    Article  Google Scholar 

  18. Cardoso P, Crespo LC, Carvalho R et al (2009) Ad-hoc vs. standardized and optimized arthropod diversity sampling. Diversity 1:36–51. https://doi.org/10.3390/d1010036

    Article  Google Scholar 

  19. Cardoso P, Arnedo MA, Triantis KA, Borges PAV (2010) Drivers of diversity in Macaronesian spiders and the role of species extinctions. J Biogeogr 37:1034–1046. https://doi.org/10.1111/j.1365-2699.2009.02264.x

    Article  Google Scholar 

  20. Cardoso P, Pekár S, Jocqué R, Coddington JA (2011) Global patterns of guild composition and functional diversity of spiders. PLoS ONE 6:e21710. https://doi.org/10.1371/journal.pone.0021710

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Cardoso P, Carvalho JC, Crespo LC, Arnedo MA (2016) Optimal inventorying and monitoring of taxon, phylogenetic and functional diversity. Biorxiv. https://doi.org/10.1101/060400

    Article  Google Scholar 

  22. Carvalho JC, Cardoso P (2014) Drivers of beta diversity in Macaronesian spiders in relation to dispersal ability. J Biogeogr 41:1859–1870. https://doi.org/10.1111/jbi.12348

    Article  Google Scholar 

  23. Carvalho JC, Cardoso P, Crespo LC et al (2011a) Biogeographic patterns of spiders in coastal dunes along a gradient of mediterraneity. Biodivers Conserv 20:873–894. https://doi.org/10.1007/s10531-011-0001-8

    Article  Google Scholar 

  24. Carvalho JC, Cardoso P, Crespo LC et al (2011b) Determinants of beta diversity of spiders in coastal dunes along a gradient of mediterraneity. Divers Distrib 17:225–234. https://doi.org/10.1111/j.1472-4642.2010.00731.x

    Article  Google Scholar 

  25. Carvalho JC, Cardoso P, Crespo LC et al (2012) Determinants of spider species richness in coastal dunes along a gradient of mediterraneity. Insect Conserv Divers 5:127–137. https://doi.org/10.1111/j.1752-4598.2011.00139.x

    Article  Google Scholar 

  26. Catry FX, Moreira F, Duarte I, Acácio V (2009) Factors affecting post-fire crown regeneration in cork oak (Quercus suber L.) trees. Eur J For Res 128:231–240. https://doi.org/10.1007/s10342-009-0259-5

    Article  Google Scholar 

  27. Céréghino R, Oertli B, Bazzanti M et al (2012) Biological traits of European pond macroinvertebrates. Hydrobiologia 689:51–61. https://doi.org/10.1007/s10750-011-0744-y

    Article  Google Scholar 

  28. Condit R, Pitman N, Leigh EG et al (2002) Beta-diversity in tropical forest trees. Science 295:666–669. https://doi.org/10.1126/science.1066854

    CAS  Article  PubMed  Google Scholar 

  29. Cowling RM, Rundel PW, Lamont BB et al (1996) Plant diversity in Mediterranean-climate regions. Trends Ecol Evol 11:362–366. https://doi.org/10.1016/0169-5347(96)10044-6

    CAS  Article  PubMed  Google Scholar 

  30. Cowling RM, Potts AJ, Bradshaw PL et al (2015) Variation in plant diversity in Mediterranean-climate ecosystems: the role of climatic and topographical stability. J Biogeogr 42:552–564. https://doi.org/10.1111/jbi.12429

    Article  Google Scholar 

  31. Crespo L, Domènech M, Enguídanos A et al (2018) A DNA barcode-assisted annotated checklist of the spider (Arachnida, Araneae) communities associated to white oak woodlands in Spanish National Parks. Biodivers Data J 6:e29443. https://doi.org/10.3897/BDJ.6.e29443

    Article  Google Scholar 

  32. Dalsgaard B, Schleuning M, Maruyama PK et al (2017) Opposed latitudinal patterns of network-derived and dietary specialization in avian plant–frugivore interaction systems. Ecography 40:1395–1401. https://doi.org/10.1111/ecog.02604

    Article  Google Scholar 

  33. Dennis P, Young MR, Bentley C (2001) The effects of varied grazing management on epigeal spiders, harvestmen and pseudoscorpions of Nardus stricta grassland in upland Scotland. Agric Ecosyst Environ 86:39–57. https://doi.org/10.1016/S0167-8809(00)00263-2

    Article  Google Scholar 

  34. Dewar RE, Richard AF (2007) Evolution in the hypervariable environment of Madagascar. Proc Natl Acad Sci USA 104:13723–13727. https://doi.org/10.1073/pnas.0704346104

    CAS  Article  PubMed  Google Scholar 

  35. Didan, K. (2015). MOD13Q1 MODIS/Terra vegetation indices 16-Day L3 global 250m SIN grid V006. NASA EOSDIS LP DAAC. https://doi.org/10.5067/MODIS/MOD13Q1.006

  36. Dray S, Legendre P, Peres-Neto PR (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol Modell 196:483–493. https://doi.org/10.1016/j.ecolmodel.2006.02.015

    Article  Google Scholar 

  37. Emerson BC, Kolm N (2005) Species diversity can drive speciation. Nature 434:1015–1017. https://doi.org/10.1038/nature03450

    CAS  Article  PubMed  Google Scholar 

  38. Entling W, Schmidt MH, Bacher S, Brandl R, Nentwig W (2007) Niche properties of Central European spiders: shading, moisture and the evolution of the habitat niche. Glob Ecol Biogeogr 16:440–448. https://doi.org/10.1111/j.1466-8238.2006.00305.x

    Article  Google Scholar 

  39. Fancy SG, Gross JE, Carter SL (2009) Monitoring the condition of natural resources in US national parks. Environ Monit Assess 151:161–174. https://doi.org/10.1007/s10661-008-0257-y

    CAS  Article  PubMed  Google Scholar 

  40. Fattorini S, Ulrich W (2012) Drivers of species richness in European Tenebrionidae (Coleoptera). Acta Oecol 43:22–28. https://doi.org/10.1016/j.actao.2012.05.003

    Article  Google Scholar 

  41. Finch OD, Blick T, Schuldt A (2008) Macroecological patterns of spider species richness across Europe. Biodivers Conserv 17:2849–2868. https://doi.org/10.1007/s10531-008-9400-x

    Article  Google Scholar 

  42. García-Vázquez D, Bilton DT, Foster GN, Ribera I (2017) Pleistocene range shifts, refugia and the origin of widespread species in western Palaearctic water beetles. Mol Phylogenet Evol 114:122–136. https://doi.org/10.1016/j.ympev.2017.06.007

    Article  PubMed  Google Scholar 

  43. Garrido-Benavent I, Llop E, Gómez-Bolea A (2015) The effect of agriculture management and fire on epiphytic lichens on holm oak trees in the eastern Iberian Peninsula. Lichenol 47:59–68. https://doi.org/10.1017/S002428291400053X

    Article  Google Scholar 

  44. Gillespie RG, Benjamin SP, Brewer MS, Rivera MAJ, Roderick GK (2018) Repeated diversification of ecomorphs in Hawaiian stick spiders. Curr Biol 28:941–947.e3. https://doi.org/10.1016/j.cub.2018.01.083

    CAS  Article  PubMed  Google Scholar 

  45. Givnish TJ, Millam KC, Mast AR et al (2009) Origin, adaptive radiation and diversification of the Hawaiian lobeliads (Asterales: Campanulaceae). Proc R Soc B 276:407–416. https://doi.org/10.1098/rspb.2008.1204

    Article  PubMed  Google Scholar 

  46. Greenstone MH (1984) Determinants of web spider species-diversity—vegetation structural diversity vs prey availability. Oecologia 62:299–304. https://doi.org/10.1007/BF00384260

    Article  PubMed  Google Scholar 

  47. Griffin RE (1998) Species richness and biogeography of on-acarine arachnids in Namibia. Biodivers Conserv 7:467–481

    Article  Google Scholar 

  48. Grinnell J (1917) The niche-relationships of the California thrasher. Auk 34:427–433. https://doi.org/10.2307/4072271

    Article  Google Scholar 

  49. Hewitt G (2000) The genetic legacy of the quaternary ice ages. Nature 405:907–913. https://doi.org/10.1038/35016000

    CAS  Article  PubMed  Google Scholar 

  50. Hewitt R, Pera F, Escobar F (2016) Modelización de las dinámicas de los usos del suelo en la Red de Parques Nacionales Españoles y su entorno. Cuad Geográficos 55:46–84

    Google Scholar 

  51. Huang J, Chen B, Liu C et al (2012) Identifying hotspots of endemic woody seed plant diversity in China. Divers Distrib 18:673–688. https://doi.org/10.1111/j.1472-4642.2011.00845.x

    Article  Google Scholar 

  52. Hughes TP, Bellwood DR, Connolly SR (2002) Biodiversity hotspots, centres of endemicity, and the conservation of coral reefs. Ecol Lett 5:775–784. https://doi.org/10.1046/j.1461-0248.2002.00383.x

    Article  Google Scholar 

  53. Irl SDH, Harter DEV, Steinbauer MJ et al (2015) Climate vs. topography—spatial patterns of plant species diversity and endemism on a high-elevation island. J Ecol 103:1621–1633. https://doi.org/10.1111/1365-2745.12463

    Article  Google Scholar 

  54. Jiménez-Valverde A, Lobo JM (2007) Determinants of local spider (Araneidae and Thomisidae) species richness on a regional scale: climate and altitude vs. habitat structure. Ecol Entomol 32:113–122. https://doi.org/10.1111/j.1365-2311.2006.00848.x

    Article  Google Scholar 

  55. Kaltsas D, Panayiotou E, Kougioumoutzis K, Chatzaki M (2019) Overgrazed shrublands support high taxonomic, functional and temporal diversity of Mediterranean ground spider assemblages. Ecol Indic 103(April):599–609. https://doi.org/10.1016/j.ecolind.2019.04.024

    Article  Google Scholar 

  56. Keeley J, Fotheringham C, Anonymous (2003) Species-area relationships in Mediterranean climate plant communities. J Biogeogr 30:1629–1657

    Article  Google Scholar 

  57. Kier G, Kreft H, Lee TM et al (2009) A global assessment of endemism and species richness across island and mainland regions. Proc Natl Acad Sci USA 106:9322–9327. https://doi.org/10.1073/pnas.0810306106

    Article  PubMed  Google Scholar 

  58. Kremen C, Colwell RK, Erwin TL et al (1993) Terrestrial arthropod assemblages: their use in conservation planning. Conserv Biol 7:796–808

    Article  Google Scholar 

  59. Ladin ZS, Higgins CD, Schmit JP et al (2016) Using regional bird community dynamics to evaluate ecological integrity within national parks. Ecosphere. https://doi.org/10.1002/ecs2.1464

    Article  Google Scholar 

  60. Lafage D, Secondi J, Georges A, Bouzillé JB, Pétillon J (2014) Satellite-derived vegetation indices as surrogate of species richness and abundance of ground beetles in temperate floodplains. Insect Conserv Divers 7:327–333. https://doi.org/10.1111/icad.12056

    Article  Google Scholar 

  61. Laliberté E, Paquette A, Legendre P, Bouchard A (2009) Assessing the scale-specific importance of niches and other spatial processes on beta diversity: a case study from a temperate forest. Oecologia 159:377–388. https://doi.org/10.1007/s00442-008-1214-8

    Article  PubMed  Google Scholar 

  62. Legendre P, Anderson MJ (1999) Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol Monogr 69:1–24

    Article  Google Scholar 

  63. Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280

    Article  Google Scholar 

  64. Legendre P, Legendre L (1998) Numerical ecology. Elsevier, Amsterdam

    Google Scholar 

  65. Linder HP (2014) Plant diversity and endemism in sub-Saharan tropical Africa. J Biogeogr 28:169–182. https://doi.org/10.1046/j.1365-2699.2001.00527.x

    Article  Google Scholar 

  66. Líznarová E, Sentenská L, Fernando L et al (2013) Local trophic specialisation in a cosmopolitan spider (Araneae). Zoology 116:20–26. https://doi.org/10.1016/j.zool.2012.06.002

    Article  PubMed  Google Scholar 

  67. Magurran AE, McGill BJ (eds) (2011) Biological diversity: frontiers in measurement and assessment. Oxford University Press, Oxford

    Google Scholar 

  68. Malumbres-Olarte J, Barratt BIP, Vink CJ et al (2013a) Habitat specificity, dispersal and burning season: recovery indicators in New Zealand native grassland communities. Biol Conserv 160:140–149. https://doi.org/10.1016/j.biocon.2013.01.004

    Article  Google Scholar 

  69. Malumbres-Olarte J, Vink CJ, Ross JG et al (2013b) The role of habitat complexity on spider communities in native alpine grasslands of New Zealand. Insect Conserv Divers 6:124–134. https://doi.org/10.1111/j.1752-4598.2012.00195.x

    Article  Google Scholar 

  70. Malumbres-Olarte J, Barratt BIP, Vink CJ et al (2014) Big and aerial invaders: dominance of exotic spiders in burned New Zealand tussock grasslands. Biol Invasions. https://doi.org/10.1007/s10530-014-0666-5

    Article  Google Scholar 

  71. Malumbres-Olarte J, Scharff N, Pape T et al (2017) Gauging megadiversity with optimized and standardized sampling protocols: a case for tropical forest spiders. Ecol Evol 7:494–506. https://doi.org/10.1002/ece3.2626

    Article  PubMed  Google Scholar 

  72. Malumbres-Olarte J, Crespo L, Cardoso P et al (2018) The same but different: equally megadiverse but taxonomically variant spider communities along an elevational gradient. Acta Oecol 88:19–28. https://doi.org/10.1016/j.actao.2018.02.012

    Article  Google Scholar 

  73. Marc P, Canard A, Ysnel F (1999) Spiders (Araneae) useful for pest limitation and bioindication. Agric Ecosyst Environ 74:229–273. https://doi.org/10.1016/S0167-8809(99)00038-9

    Article  Google Scholar 

  74. McCune B, Grace JB (2002) Analysis of ecological communities. MjM Software Design, Gleneden Beach, Oregon

    Google Scholar 

  75. Medail F, Quezel P (1997) Hot-spots analysis for conservation of plant biodiversity in the Mediterranean basin. Ann Missouri Bot Gard 84:112. https://doi.org/10.2307/2399957

    Article  Google Scholar 

  76. Merino A, López L, Hermida L et al (2015) Identification of drought phases in a 110-year record from Western Mediterranean basin: trends, anomalies and periodicity analysis for Iberian Peninsula. Glob Planet Change 133:96–108. https://doi.org/10.1016/j.gloplacha.2015.08.007

    Article  Google Scholar 

  77. Michalko R, Pekár S, Entling MH (2019) An updated perspective on spiders as generalist predators in biological control. Oecologia 189:21–36. https://doi.org/10.1007/s00442-018-4313-1

    Article  PubMed  Google Scholar 

  78. Moretti M, Conedera M, Duelli P, Edwards PJ (2002) The effects of wildfire on ground-active spiders in deciduous forests on the Swiss southern slope of the Alps. J Appl Ecol 39:321–336. https://doi.org/10.1046/j.1365-2664.2002.00701.x

    Article  Google Scholar 

  79. Morillo C, Gómez-Campo C (2000) Conservation in Spain, 1980–2000. Biol Conserv 95:165–174. https://doi.org/10.1016/S0006-3207(00)00031-8

    Article  Google Scholar 

  80. Myers N, Mittermeier RA, Mittermeier CG et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. https://doi.org/10.1038/35002501

    CAS  Article  PubMed  Google Scholar 

  81. Natalini F, Alejano R, Vázquez-Piqué J et al (2016) Spatiotemporal variability of stone pine (Pinus pinea L.) growth response to climate across the Iberian Peninsula. Dendrochronologia 40:72–84. https://doi.org/10.1016/j.dendro.2016.07.001

    Article  Google Scholar 

  82. Ninyerola M, Pons X, Roure J (2005) Atlas Climático Digital de la Península Ibérica. Metodología y aplicaciones en bioclimatología y geobotánica. Universidad Autónoma de Barcelona, Bellaterra

    Google Scholar 

  83. Ohlemüller R, Anderson BJ, Araújo MB et al (2008) The coincidence of climatic and species rarity: high risk to small-range species from climate change. Biol Lett 4:568–572. https://doi.org/10.1098/rsbl.2008.0097

    Article  PubMed  PubMed Central  Google Scholar 

  84. Oksanen J, Blanchet FG, Friendly M et al (2018) vegan: community ecology package. R package version 2.5-5. https://CRAN.R-project.org/package=vegan

  85. Orme CDL, Davies RG, Burgess M et al (2005) Global hotspots of species richness are not congruent with endemism or threat. Nature 436:1016–1019. https://doi.org/10.1038/nature03850

    CAS  Article  PubMed  Google Scholar 

  86. Peguero-Pina JJ, Sisó S, Sancho-Knapik D et al (2016) Leaf morphological and physiological adaptations of a deciduous oak (Quercus faginea Lam.) to the Mediterranean climate: a comparison with a closely related temperate species (Quercus robur L.). Tree Physiol 36:287–299. https://doi.org/10.1093/treephys/tpv107

    Article  PubMed  Google Scholar 

  87. Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data metrices: estimation and comparison of fractions. Ecology 87:2614–2625. https://doi.org/10.2307/20069271

    Article  PubMed  Google Scholar 

  88. R Core Team (2019). R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. https://www.R-project.org/.

  89. Rix MG, Edwards DL, Byrne M et al (2015) Biogeography and speciation of terrestrial fauna in the south-western Australian biodiversity hotspot. Biol Rev 90:762–793. https://doi.org/10.1111/brv.12132

    Article  PubMed  Google Scholar 

  90. Romo H, García-Barros E (2010) Biogeographic regions of the Iberian Peninsula: butterflies as biogeographical indicators. J Zool 282:180–190. https://doi.org/10.1111/j.1469-7998.2010.00730.x

    Article  Google Scholar 

  91. Rund SSC, Braak K, Cator L et al (2019) MIReAD, a minimum information standard for reporting arthropod abundance data. Sci Data 6:40. https://doi.org/10.1038/s41597-019-0042-5

    Article  PubMed  PubMed Central  Google Scholar 

  92. Rundel PW, Arroyo MTK, Cowling RM et al (2016) Mediterranean biomes: evolution of their vegetation, floras, and climate. Annu Rev Ecol Evol Syst 47:383–407. https://doi.org/10.1146/annurev-ecolsys-121415-032330

    Article  Google Scholar 

  93. Sánchez de Dios R, Benito-Garzón M, Sainz-Ollero H (2009) Present and future extension of the Iberian submediterranean territories as determined from the distribution of marcescent oaks. Plant Ecol 204:189–205. https://doi.org/10.1007/s11258-009-9584-5

    Article  Google Scholar 

  94. Scharff N, Coddington JA, Griswold CE et al (2003) When to quit? Estimating spider species richness in a northern European deciduous forest. J Arachnol 31:246–273

    Article  Google Scholar 

  95. Schmitt T, Varga Z (2012) Extra-Mediterranean refugia: the rule and not the exception? Front Zool 9:1–12. https://doi.org/10.1186/1742-9994-9-22

    Article  Google Scholar 

  96. Simmons RE, Griffin M, Griffin RE et al (1998) Endemism in Namibia: patterns, processes and predictions. Biodivers Conserv 7:513–530. https://doi.org/10.1023/A:1008879712736

    Article  Google Scholar 

  97. Simpson GG (1964) Species density of North American recent mammals. Syst Zool 13:57–73. https://doi.org/10.2307/2411825

    Article  Google Scholar 

  98. Soberón J (2007) Grinnellian and Eltonian niches and geographic distributions of species. Ecol Lett 10:1115–1123. https://doi.org/10.1111/j.1461-0248.2007.01107.x

    Article  PubMed  Google Scholar 

  99. Steinbauer MJ, Otto R, Naranjo-Cigala A et al (2012) Increase of island endemism with altitude—speciation processes on oceanic islands. Ecography (Cop) 35:23–32. https://doi.org/10.1111/j.1600-0587.2011.07064.x

    Article  Google Scholar 

  100. Steinbauer M, Dolos K, Field R et al (2013) Re-evaluating the general dynamic theory of oceanic island biogeography. Front Biogeogr 5:217–220. https://doi.org/10.5811/westjem.2011.5.6700

    Article  Google Scholar 

  101. Stewart JR, Lister AM (2001) Cryptic northern refugia and the origins of the modern biota. Trends Ecol Evol 16:608–613. https://doi.org/10.1016/S0169-5347(01)02338-2

    Article  Google Scholar 

  102. Underwood EC, Viers JH, Klausmeyer KR et al (2009) Threats and biodiversity in the Mediterranean biome. Divers Distrib 15:188–197. https://doi.org/10.1111/j.1472-4642.2008.00518.x

    Article  Google Scholar 

  103. Val Martin M, Heald CL, Lamarque JF et al (2015) How emissions, climate, and land use change will impact mid-century air quality over the United States: a focus on effects at national parks. Atmos Chem Phys 15:2805–2823. https://doi.org/10.5194/acp-15-2805-2015

    CAS  Article  Google Scholar 

  104. Vaughan H, Brydges T, Fenech A, Lumb A (2001) Monitoring long-term ecological changes through the ecological monitoring and assessment network: science-based and policy relevant. Environ Monit Assess 67:3–28. https://doi.org/10.1023/A:1006423432114

    CAS  Article  PubMed  Google Scholar 

  105. Verdú JR, Crespo MB, Galante E (2000) Conservation strategy of a nature reserve in Mediterranean ecosystems: the effect of protection from grazing on biodiversity. Biodivers Conserv 9:1707–1721

    Article  Google Scholar 

  106. Violle C, Navas M-L, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional! Oikos 116(5):882–892. https://doi.org/10.1111/j.0030-1299.2007.15559.x

    Article  Google Scholar 

  107. Whittaker RH (1956) Vegetation of the Great Smoky Mountains. Ecol Monogr 26:1–80. https://doi.org/10.2307/1943577

    Article  Google Scholar 

  108. Williams PH, Humphries C, Araújo MB et al (2000) Endemism and important areas for conserving European biodiversity: a preliminary exploration of atlas data for plants and terrestrial vertebrates. Belg J Entomol 2:21–46

    Google Scholar 

  109. Wise DH (1993) Spiders in ecological webs. Cambridge University Press, Cambridge

    Google Scholar 

  110. World Spider Catalog (2020) World Spider Catalog. Version 20.0. Natural History Museum Bern. https://doi.org/10.24436/2, https://wsc.nmbe.ch. Accessed 1 May 2019

  111. Ysnel F, Pétillon J, Gérard E, Canard A (2008) Assessing the conservation value of the spider fauna across the West Palearctic area. J Arachnol 36:457–463. https://doi.org/10.1636/CT07-121.1

    Article  Google Scholar 

Download references

Acknowledgements

This work would not have been possible without the priceless help of all the people that participated in collecting and sorting the samples, namely Nuria Macías, Eva de Mas, Paola Mazzuca, Elisa Mora, Vera Opatova Enric Planas, Marcos Roca-Cusachs, Dolores Ruiz, Pedro Sousa and Vanina Tonzo. We also want to acknowledge the park directors and responsables Miguel Menéndez de la Hoz (Picos de Europa), Elena Villagrasa (Ordesa), Maria Merced Aniz Montes (Aigüestortes), Angel Rodriguez Martin (Monfragüe), Angel Gómez Manzaneque (Cabañeros), Blanca Ramos Losada (Sierra Nevada) for issuing the permits and providing logistic support for conducting fieldwork in their respective parks. We would like to further acknowledge all the park rangers that help us locating and helping us to set up the plots. We are grateful to AEMET (Agencia Estatal de Meteorología, Spain) for providing climatic data for the Iberian Peninsula. We also thank the University of Barcelona for supporting the contribution of M.D. through the APIF PhD fellowship. This research was supported by The Spanish Autonomous Organization of National Parks (Ministry of Agriculture, Alimentation and Environment) grant 495/2012 “Reconciling semi-quantitative bioinventoring with DNA barcoding to infer diversity and biogeographical patterns in the Spanish National Parks network” to MAA.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jagoba Malumbres-Olarte.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Forest and plantation biodiversity.

Communicated by Nigel E. Stork.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Malumbres-Olarte, J., Crespo, L.C., Domènech, M. et al. How Iberian are we? Mediterranean climate determines structure and endemicity of spider communities in Iberian oak forests. Biodivers Conserv 29, 3973–3996 (2020). https://doi.org/10.1007/s10531-020-02058-7

Download citation

Keywords

  • Araneae
  • Species distributions
  • Endemism
  • Functional traits
  • White-oak forest
  • COBRA protocols