Skip to main content

Advertisement

Log in

Assessing the scale-specific importance of niches and other spatial processes on beta diversity: a case study from a temperate forest

  • Community Ecology - Methods Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Niche processes and other spatial processes, such as dispersal, may simultaneously control beta diversity, yet their relative importance may shift across spatial and temporal scales. Although disentangling the relative importance of these processes has been a continuing methodological challenge, recent developments in multi-scale spatial and temporal modeling can now help ecologists estimate their scale-specific contributions. Here we present a statistical approach to (1) detect the presence of a space–time interaction on community composition and (2) estimate the scale-specific importance of environmental and spatial factors on beta diversity. To illustrate the applicability of this approach, we use a case study from a temperate forest understory where tree seedling abundances were monitored during a 9-year period at 40 permanent plots. We found no significant space–time interaction on tree seedling composition, which means that the spatial abundance patterns did not vary over the study period. However, for a given year the relative importance of niche processes and other spatial processes was found to be scale-specific. Tree seedling abundances were primarily controlled by a broad-scale environmental gradient, but within the confines of this gradient the finer scale patchiness was largely due to other spatial processes. This case study illustrates that these two sets of processes are not mutually exclusive and can affect abundance patterns in a scale-dependent manner. More importantly, the use of our methodology for future empirical studies should help in the merging of niche and neutral perspectives on beta diversity, an obvious next step for community ecology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abrams MD (1998) The red maple paradox: what explains the widespread expansion of red maple in eastern forests? BioScience 48:355–364

    Article  Google Scholar 

  • Anderson MJ, Legendre P (1999) An empirical comparison of permutation methods for tests of partial regression coefficients in a linear model. J Stat Comput Simul 62:271–303

    Article  Google Scholar 

  • Ashton PMS, Yoon H, Rajesh T, Berlyn GP (1999) Seedling leaf structure of New England maples (Acer) in relation to light environment. For Sci 45:512–519

    Google Scholar 

  • Barot S, Gignoux J (2004) Mechanisms promoting plant coexistence: can all the proposed processes be reconciled? Oikos 106:185–192

    Article  Google Scholar 

  • Bélanger N, Côté B, Fyles JW, Courchesne F, Hendershot WH (2004) Forest regrowth as the controlling factor of soil nutrient availability 75 years after fire in a deciduous forest of Southern Quebec. Plant Soil 262:363–372

    Google Scholar 

  • Bell G, Lechowicz MJ, Appenzeller A, Chandler M, Deblois B, Jackson L, Mackenzie B, Preziosi R, Schallenberg M, Tinker N (1993) The spatial structure of the physical environment. Oecologia 96:114–121

    Google Scholar 

  • Bell G, Lechowicz MJ, Waterway MJ (2006) The comparative evidence relating to functional and neutral interpretations of biological communities. Ecology 87:1378–1386

    Article  PubMed  Google Scholar 

  • Borcard D, Legendre P (1994) Environmental control and spatial structure in ecological communities: an example using Oribatid mites (Acari, Oribatei). Environ Ecol Stat 1:37–61

    Article  Google Scholar 

  • Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol Modell 153:51–68

    Article  Google Scholar 

  • Borcard D, Legendre P, Avois-Jacquet C, Tuomisto H (2004) Dissecting the spatial structure of ecological data at multiple scales. Ecology 85:1826–1832

    Article  Google Scholar 

  • Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055

    Article  Google Scholar 

  • Burns RM, Honkala BH (1990) Silvics of North America, vol 2: hardwoods. USDA Agricultural Handbook No. 654. U.S. Department of Agriculture, Washington DC

  • Chave J, Leigh EG (2002) A spatially explicit neutral model of beta-diversity in tropical forests. Theor Popul Biol 62:153–168

    Article  PubMed  Google Scholar 

  • Clark JS, LaDeau S, Ibanez I (2004) Fecundity of trees and the colonization-competition hypothesis. Ecol Monogr 74:415–442

    Article  Google Scholar 

  • Cottenie K (2005) Integrating environmental and spatial processes in ecological community dynamics. Ecol Lett 8:1175–1182

    Article  Google Scholar 

  • Courchesne F, Côté B, Fyles JW, Hendershot WH, Biron PM, Roy AG, Turmelet M-C (2005) Recent changes in soil chemistry in a forested ecosystem of southern Québec, Canada. Soil Sci Soc Am J 69:1298–1313

    Google Scholar 

  • Courchesne F, Hendershot WH (1988) Cycle annuel des éléments nutritifs dans un bassin-versant forestier: contribution de la litière fraîche. Can J For Res 18:930–936

    Article  Google Scholar 

  • Currie DJ (2007) Disentangling the roles of environment and space in ecology. J Biogeogr 34:2009–2011

    Article  Google Scholar 

  • Draper NR, Smith H (1981) Applied regression analysis. Wiley, New York

    Google Scholar 

  • Dray S (2005) packfor: forward selection with multivariate Y by permutation under reducel model. Laboratoire Biométrie et Biologie Évolutive, Lyon. Available at: http://biomserv.univ-lyon1.fr/~dray/software.php

  • Dray S, Legendre P, Peres-Neto P (2006) Spatial modeling: a comprehensive framework for principal coordinate analysis of neighbor matrices (PCNM). Ecol Modell 196:483–493

    Article  Google Scholar 

  • Englund SR, O’Brien JJ, Clark DB (2000) Evaluation of digital and film hemispherical photography and spherical densiometry for measuring forest light environments. Can J For Res 30:1999–2005

    Article  Google Scholar 

  • Frazer GW, Canham CD, Lerstzan KP (2000) Gap light analyzer version 2.0. Bull Ecol Soc Am 81:191–197

    Article  Google Scholar 

  • Freestone AL, Inouye BD (2006) Dispersal limitation and environmental heterogeneity shape scale-dependent diversity patterns in plant communities. Ecology 87:2425–2432

    Article  PubMed  Google Scholar 

  • Gilbert B, Lechowicz MJ (2004) Neutrality, niches, and dispersal in a temperate forest understory. Proc Natl Acad Sci USA 101:7651–7656

    Article  PubMed  CAS  Google Scholar 

  • Griffith DA, Peres-Neto PR (2006) Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses. Ecology 87:2603–2613

    Article  PubMed  Google Scholar 

  • Hibbs DE, Fischer BC (1979) Sexual and vegetative reproduction of striped maple (Acer pensylvanicum L.). Bull Torrey Bot Club 106:222–227

    Article  Google Scholar 

  • Hibbs DE, Wilson BF, Fischer BC (1980) Habitat requirements and growth of striped maple (Acer pensylvanicum L.). Ecology 61:490–496

    Article  Google Scholar 

  • Holyoak M, Loreau M (2006) Reconciling empirical ecology with neutral community models. Ecology 87:1370–1377

    Article  PubMed  Google Scholar 

  • Host GE, Pregitzer KS, Ramm DW, Hart JB, Cleland DT (1987) Landform-mediated differences in successional pathways among upland forest ecosystems in northwestern lower Michigan. For Sci 33:445–457

    Google Scholar 

  • Houle G (1991) Regenerative traits of tree species in a deciduous forest of northeastern North America. Holarctic Ecol 14:142–151

    Google Scholar 

  • Houle G (1992) Spatial relationship between seed and seedling abundance and mortality in a deciduous forest of north-eastern North America. J Ecol 80:99–108

    Article  Google Scholar 

  • Houle G (1994) Spatiotemporal patterns in the components of regeneration of four sympatric tree species—Acer rubrum, A. saccharum, Betula alleghaniensis and Fagus grandifolia. J Ecol 82:39–53

    Article  Google Scholar 

  • Houle G (1999) Mast seeding in Abies balsamea, Acer saccharum and Betula alleghaniensis in an old growth, cold temperate forest of north-eastern North America. J Ecol 87:413–422

    Article  Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Hubbell SP, Foster RB, O'Brian ST, Harms KE, Condit R et al (1999) Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science 283:554–557

    Google Scholar 

  • John R, Dalling JW, Harms KE, Yavitt JB, Stallard RF et al (2007) Soil nutrients influence spatial distributions of tropical tree species. Proc Natl Acad Sci USA 104:864–869

    Article  PubMed  CAS  Google Scholar 

  • Jones MM, Tuomisto H, Borcard D, Legendre P, Clark DB, Olivas PC (2008) Explaining variation in tropical plant community composition: influence of environmental and spatial data quality. Oecologia 155:593–604

    Article  PubMed  Google Scholar 

  • Jones MM, Tuomisto H, Clark DB, Olivas P (2006) Effects of mesoscale environmental heterogeneity and dispersal limitation on floristic variation in rain forest ferns. J Ecol 94:181–195

    Article  CAS  Google Scholar 

  • Karst J, Gilbert B, Lechowicz MJ (2005) Fern community assembly: the roles of chance and the environment at local and intermediate scales. Ecology 86:2473–2486

    Article  Google Scholar 

  • Legendre L, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280

    Article  Google Scholar 

  • Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74:1659–1673

    Article  Google Scholar 

  • Legendre P, Anderson MJ (1999) Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol Monogr 69:1–24

    Article  Google Scholar 

  • Legendre P, Borcard D, Peres-Neto P (2005) Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecol Monogr 75:435–450

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology, 2nd English edn. Elsevier, Amsterdam

    Google Scholar 

  • Levin SA (1992) The problem of pattern and scale in ecology. Ecology 73:1943–1967

    Article  Google Scholar 

  • Nathan R, Katul GG (2005) Foliage shedding in deciduous forests lifts up long-distance seed dispersal by wind. Proc Natl Acad Sci USA 102:8251–8256

    Article  PubMed  CAS  Google Scholar 

  • Nowacki GJ, Arbams MD, Lorimer CG (1990) Composition, structure, and historical development of northern red oak stands along an edaphic gradient in north-central Wisconsin. For Sci 36:276–292

    Google Scholar 

  • Oksanen J, Kindt R, Legendre P, O’Hara B (2007) vegan: community ecology package, version 1.8-5. Available at: http://cran.r-project.org/

  • Paquette A, Laliberté E, Bouchard A, de Blois S, Legendre P, Brisson J (2007) Lac Croche understory vegetation data set (1998–2006). Ecology 88:3209

    Article  Google Scholar 

  • Peres-Neto P, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87:2614–2625

    Article  PubMed  Google Scholar 

  • R Development Core Team (2007) R: a language and environment for statistical computing, version 2.3.1. R Foundation for Statistical Computing, Vienna. Available at: http://www.r-project.org/

  • Ricklefs RE, Schluter D (1993) Species diversity in ecological communities: historical and geographical perspectives. University of Chicago Press, Chicago

    Google Scholar 

  • Savage C (2001) Recolonisation forestière dans les Basses Laurentides au sud du domaine climacique de l’érablière à bouleau jaune. MSc thesis. Département de sciences biologiques, Université de Montréal, Montreal

  • Schwarz PA, Fahey TJ, McCulloch CE (2003) Factors controlling spatial variation of tree species abundance in a forested landscape. Ecology 84:1862–1878

    Article  Google Scholar 

  • Seidler TG, Plotkin JB (2006) Seed dispersal and spatial pattern in tropical trees. PLoS Biol 4:1–6

    Article  CAS  Google Scholar 

  • Soil Survey Division Staff (1993) Soil survey manual. Soil Conservation Service, United States Department of Agriculture (USDA), Washington DC

  • Soininen J, Lennon JJ, Hillebrand H (2007) A multivariate analysis of beta diversity across organisms and environments. Ecology 88:2830–2838

    Article  PubMed  Google Scholar 

  • Tuomisto H, Ruokolainen K, Yli-Halla M (2003) Dispersal, environment, and floristic variation of Western Amazonian forests. Science 299:241–244

    Article  PubMed  CAS  Google Scholar 

  • Van der Gucht K, Cottenie K, Muylaert K, Vloemans N, Cousin S et al (2007) The power of species sorting: local factors drive bacterial community composition over a wide range of spatial scales. Proc Natl Acad Sci USA 104:20404–20409

    Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York

    Google Scholar 

  • Wiens JA, Addicott JF, Case TJ, Diamond J (1986) Overview: the importance of spatial and temporal scale in ecological investigations. In: Diamond J, Case TJ (eds) Community ecology. Harper & Row, New York, pp 145–153

    Google Scholar 

Download references

Acknowledgments

We wish to thank F. He, J. Oksanen, K.L. Gross, J.B. Grace and anonymous reviewers for helpful comments on previous versions of the manuscript. This work was made possible by a large number of people involved in data collection from 1998 through 2006. For supervision of field work, we wish to thank K. Benjamin, J. Corriveau, G. Couture, C. Savage, R. Léonard, L. d’Orangeville, M. Lapointe, J. Thibeault, P.-O. Roy, M.-A. Vaillancourt, R. Schmucki, J. Villeneuve and G. Maltais-Landry. Thanks to the staff of Station de biologie des Laurentides (SBL) for support. This research was funded by a NSERC grant to A. Bouchard and by the Département de sciences biologiques of Université de Montréal. During the writing of this manuscript, E. Laliberté was supported by scholarships from the University of Canterbury and the Fonds québécois de recherche sur la nature et les technologies (FQRNT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne Laliberté.

Additional information

Communicated by Katherine Gross.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material S1 (DOC 51 kb).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laliberté, E., Paquette, A., Legendre, P. et al. Assessing the scale-specific importance of niches and other spatial processes on beta diversity: a case study from a temperate forest. Oecologia 159, 377–388 (2009). https://doi.org/10.1007/s00442-008-1214-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-008-1214-8

Keywords

Navigation