Skip to main content

Advertisement

Log in

Conservation values of understory vascular plants in even- and uneven-aged Nothofagus antarctica forests

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Usually, stands with aging trees are considered forests with higher conservation values, regardless their structural diversity and other functional attributes. Natural stands present a wide range of age structures, from even-aged stands growing at different development growth phases (e.g. CO = stands at initial or final optimum development growth phase, MD = stands at mature or decaying development growth phases) to uneven-aged stands with mixed development growth phases (e.g. UOG = stands combining mature or decaying development growth phases with initial or final optimum development growth phases, UMD = stands combining only mature and decaying development growth phases). The aim of this work was to compare richness and cover of understory vascular plants of even- and uneven-aged stands of Nothofagus antarctica (ñire) forests in Tierra del Fuego (Argentina), and relate these characteristics with abiotic, soil and forest structure variables. A total of 75 stands were sampled across the natural range distribution of the forests, where understory (point intercept method), forest structure (angle count sampling and eye-fish photos) and environmental (soil) variables were measured. 17 one-way ANOVAs were conducted using Tukey test at p < 0.05 to compare the means. Among forest structure and environmental variables, cover (F = 4.3, p = 0.007), radiation (F = 4.4, p = 0.006), phosphorous (F = 3.9, p = 0.012), tree density (F = 10.3, p < 0.001), tree diameter (F = 10.3, p < 0.001) and stand growth (F = 4.9, p = 0.004) showed significant differences, and in general with a positive or negative trend across the MD—UMD—UOG—CO gradient. Total (F = 6.5, p < 0.001) and native species richness of the understory (F = 7.2, p < 0.001) were significantly different among forest types, where UMD > UOG > MD > CO (17–28 total, and 13–24 native species, respectively). Neither exotic species richness (4–5 species) nor understory cover significantly changed among treatments (total, dicots, ferns and bryophytes). However, monocots cover significantly differed among treatments (F = 3.9, p = 0.012), where UMD > MD > UOG > CO. Finally, indicator species cover for environmental degradation did not present significant differences (F = 2.1, p = 0.106), but they were positive related to forests growing in mature stages. We concluded that uneven-aged stands presented significantly higher conservation values compared to even-aged stands, where mature/decay stands have better conservation values than optimum growth development phases. These findings can be used for better silviculture practices that combine silvopastoral use and conservation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bahamonde HA, Peri PL, Alvarez R, Barneix A, Moretto A, Martínez Pastur G (2013) Silvopastoral use of Nothofagus antarctica in Southern Patagonian forests, influence over net nitrogen soil mineralization. Agrofor Syst 87:259–271

    Google Scholar 

  • Bahamonde HA, Peri PL, Martínez Pastur G, Monelos LH (2015) Litterfall and nutrients return in Nothofagus antarctica forests growing in a site quality gradient with different management uses in Southern Patagonia. Eur J For Res 134:113–124

    Google Scholar 

  • Bahamonde HA, Martínez Pastur G, Lencinas MV, Soler R, Rosas YM, Ladd B, Duarte Guardia S, Peri PL (2018) The relative importance of soil properties and regional climate as drivers of productivity in southern Patagonia’s Nothofagus antarctica forests. Ann For Sci 75(2):45

    Google Scholar 

  • Bauhus J, Puettmann K, Messier Ch (2009) Silviculture for old-growth attributes. For Ecol Manage 258(4):525–537

    Google Scholar 

  • Beese WJ, Dunsworth BG, Zielke K, Bancroft B (2003) Maintaining attributes of old-growth forests in coastal BC through variable retention. For Chron 79(3):570–578

    Google Scholar 

  • Bitterlich W (1984) The relascope idea: relative measurements in forestry. CAB, London, England, p 242

    Google Scholar 

  • Bohn FJ, Huth A (2017) The importance of forest structure to biodiversity-productivity relationships. R Soc Open Sci 4(1):160521

    PubMed  PubMed Central  Google Scholar 

  • Boyle WA, Ganong C, Clark DB, Hast MA (2008) Density, distribution, and attributes of tree cavities in an old-growth tropical rain forest. Biotropica 40(2):241–245

    Google Scholar 

  • Bray RH, Kurtz LT (1945) Determination of total, organic, and available forms of phosphorus in soils. Soil Sci 59:39–45

    CAS  Google Scholar 

  • Collado L (2001) Los bosques de Tierra del Fuego: Análisis de su estratificación mediante imágenes satelitales para el inventario forestal de la provincia. Multequina 10:1–16

    Google Scholar 

  • Correa MN (1969–1998) Flora Patagónica. INTA. Buenos Aires, Argentina

  • Deferrari G, Camilión C, Martínez Pastur G, Peri PL (2001) Changes in Nothofagus pumilio forest biodiversity during the forest management cycle: Birds. Biodiv Conserv 10(12):2093–2108

    Google Scholar 

  • Diehl P, Mazzarino MJ, Funes F, Fontenla S, Gobbi M, Ferrari J (2003) Nutrient conservation strategies in native Andean-Patagonian forests. J Veg Sci 14:63–70

    Google Scholar 

  • Duncanson LI, Dubayah RO, Enquist BJ (2015) Assessing the general patterns of forest structure: Quantifying tree and forest allometric scaling relationships in the United States. Global Ecol Biogeogr 24(12):1465–1475

    Google Scholar 

  • Fahey TJ (2018) Belowground ecology and dynamics in eastern old-growth forests. In: Barton AM, Keeton WS (eds) Ecology and recovery of eastern old-growth forests. Island Press. Washington, USA, pp 179–195

    Google Scholar 

  • Frangi JL, Richter L, Barrera MD, Allogia M (1997) Decomposition of Nothofagus fallen woody debris in forests of Tierra del Fuego. Argentina Can J For Res 27(7):1095–1102

    Google Scholar 

  • Frazer GW, Fournier RA, Trofymow JA, Gall RJ (2001) A comparison of digital and film fisheye photography for analysis of forest canopy structure and gap light transmission. Agric For Meteorol 109:249–263

    Google Scholar 

  • Keeton WS, Franklin JF (2005) Do remnant old-growth trees accelerate rates of succession in mature Douglas-fir forests? Ecol Monogr 75(1):103–118

    Google Scholar 

  • Hakkenberg CR, Song C, Peet RK, White PS (2016) Forest structure as a predictor of tree species diversity in the North Carolina Piedmont. J Veg Sci 27(6):1151–1163

    Google Scholar 

  • Henn J, Anderson C, Kreps G, Lencinas MV, Soler R, Martínez Pastur G (2014) Determining abiotic and biotic drivers that limit active riparian forest restoration in abandoned beaver meadows in Tierra del Fuego. Ecol Rest 32(4):369–378

    Google Scholar 

  • Hill MO (1979) DECORANA-A FORTRAN program for detrended correspondence analysis and reciprocal averaging. Ecology and Systematics, New York, USA

    Google Scholar 

  • Hilmers T, Friess N, Bässler C, Heurich M, Brandl R, Pretzsch H, Seidl R, Müller J (2018) Biodiversity along temperate forest succession. J Appl Ecol 55(6):2756–2766

    Google Scholar 

  • Huertas Herrera A, Cellini JM, Barrera MD, Lencinas MV, Martínez Pastur G (2018) Environmental gradients and anthropogenic impacts as main drivers for the invasion of exotics plants in forest mountain landscapes of South Patagonia. For Ecol Manage 430:380–393

    Google Scholar 

  • Ishii HT, Tanabe S, Hiura T (2004) Exploring the relationships among canopy structure, stand productivity, and biodiversity of temperate forest ecosystems. For Sci 50(3):342–355

    Google Scholar 

  • Ivancich H, Martínez Pastur G, Peri PL (2011) Modelos forzados y no forzados para el cálculo del índice de sitio en bosques de Nothofagus antarctica. Bosque 32(2):135–145

    Google Scholar 

  • Ivancich H (2013) Relaciones entre la estructura forestal y el crecimiento del bosque de Nothofagus antarctica en gradientes de edad y calidad de sitio. Doctoral thesis. Universidad Nacional de La Plata. La Plata, Argentina. pp 181

  • Ivancich H, Martínez Pastur G, Lencinas MV, Cellini JM, Peri PL (2014) Proposals for Nothofagus antarctica diameter growth estimation: Simple vs. global models. J For Sci 60(8):307–317

    Google Scholar 

  • Lellia Ch, Bruun H, Chiaruccia A, Donatia D, Frascarolia F, Fritz O, Goldberg I, Nascimbene J, Tøttrup A, Rahbek C, Heilmann-Clausen J (2019) Biodiversity response to forest structure and management: comparing species richness, conservation relevant species and functional diversity as metrics in forest conservation. For Ecol Manage 432:707–717

    Google Scholar 

  • Lencinas MV, Sola F, Martínez Pastur G (2017) Variable retention effects on vascular plants and beetles along a regional gradient in Nothofagus pumilio forests. For Ecol Manage 406:251–265

    Google Scholar 

  • Levy EG, Madden EA (1933) The point method of pasture analyses. NZ J Agric 46:267–379

    Google Scholar 

  • Lindenmayer DB, Franklin JF, Fischer J (2006) General management principles and a checklist of strategies to guide forest biodiversity conservation. Biol Conserv 131(3):433–445

    Google Scholar 

  • Lindenmayer DB, Franklin JF, Lõhmus A, Baker S, Bauhus J, Beese W, Brodie A, Kiehl B, Kouki J, Martínez Pastur G, Messier Ch, Neyland M, Palik B, Sverdrup-Thygeson A, Volney J, Wayne A, Gustafsson L (2012) A major shift to the retention approach for forestry can help resolve some global forest sustainability issues. Conserv Let 5(6):421–431

    Google Scholar 

  • Lozano-García B, Parras-Alcánta L, Brevik EC (2016) Impact of topographic aspect and vegetation (native and reforested areas) on soil organic carbon and nitrogen budgets in Mediterranean natural areas. Sci Tot Environ 544:963–970

    Google Scholar 

  • Martínez Pastur G, Peri PL, Fernández MC, Staffieri G, Lencinas MV (2002) Changes in understory species diversity during the Nothofagus pumilio forest management cycle. J For Res 7(3):165–174

    Google Scholar 

  • Martínez Pastur G, Peri PL, Cellini JM, Lencinas MV, Barrera MD, Ivancich H (2011a) Canopy structure analysis for estimating forest regeneration dynamics and growth in Nothofagus pumilio forests. Ann For Sci 68:587–594

    Google Scholar 

  • Martínez Pastur G, Cellini JM, Lencinas MV, Barrera M, Peri PL (2011b) Environmental variables influencing regeneration of Nothofagus pumilio in a system with combined aggregated and dispersed retention. For Ecol Manage 261:178–186

    Google Scholar 

  • Martínez Pastur G, Jordán C, Lencinas MV, Soler R, Ivancich H, Kreps G (2012) Landscape and microenvironmental conditions influence over regeneration dynamics in old-growth Nothofagus betuloides Southern Patagonian forests. Plant Biosyst 146(1):201–213

    Google Scholar 

  • Martínez Pastur G, Lencinas MV, Gallo E, De Cruz MC, Borla ML, Soler R, Anderson C (2015) Habitat-specific vegetation and seasonal drivers of bird community structure and function in southern Patagonian forests. Comm Ecol 16(1):55–65

    Google Scholar 

  • Martínez Pastur G, Peri PL, Soler R, Schindler S, Lencinas MV (2016) Biodiversity potential of Nothofagus forests in Tierra del Fuego (Argentina): Tool proposal for regional conservation planning. Biodiv Conserv 25(10):1843–1862

    Google Scholar 

  • Martínez Pastur G, Peri PL, Huertas Herrera A, Schindler S, Díaz Delgado R, Lencinas MV, Soler R (2017) Linking potential biodiversity and three ecosystem services in silvopastoral managed forests landscapes of Tierra del Fuego, Argentina. Int J Biodiv Sci Ecosyst Serv Manage 13(2):1–11

    Google Scholar 

  • McCune B, Mefford MJ (1999) Multivariate analysis of ecological data. Version 4.0. MjM software. Gleneden Beach, Oregon, USA

    Google Scholar 

  • McIntosh A, Macdonald SE, Quideau SA (2016) Understory plant community composition is associated with fine-scale above- and below-ground resource heterogeneity in mature lodgepole pine (Pinus contorta) forests. PLoS ONE 11(3):e0151436

    PubMed  PubMed Central  Google Scholar 

  • Moore DM (1983) Flora of Tierra del Fuego. London, England, Missouri Botanical Garden, Anthony Nelson, p 396

    Google Scholar 

  • Nolet P, Kneeshaw D, Messier Ch, Béland M (2018) Comparing the effects of even- and uneven-aged silviculture on ecological diversity and processes: A review. Ecol Evol 8(2):1217–1226

    PubMed  Google Scholar 

  • Oliver TH, Heard M, Isaac N, Roy D, Procter D, Eigenbrod F, Freckleton R, Hector A, Orme D, Petchey O, Proença V, Raffaelli D, Suttle K, Mace G, Martín-López B, Woodcock B, Bullock J (2015) Biodiversity and resilience of ecosystem functions. Trends Ecol Evol 30(11):673–684

    PubMed  Google Scholar 

  • Penone C, Allan E, Soliveres S, Felipe-Lucia MR, Gossner M, Seibold S, Simons N, Schall P, van der Plas F, Manning P, Manzanedo R, Boch S, Prati D, Ammer Ch, Bauhus J, Buscot F, Ehbrecht M, Goldmann K, Jung K, Müller J, Müller JC, Pena R, Polle A, Renner S, Ruess L, Schönig I, Schrumpf M, Solly E, Tschapka M, Weisser W, Wubet T, Fischer M (2019) Specialisation and diversity of multiple trophic groups are promoted by different forest features. Ecol Let 22(1):170–180

    Google Scholar 

  • Perera A, Peterson U, Martínez Pastur G, Iverson L (2018) Ecosystem services from forest landscapes: Broadscale considerations. Springer, Cham, Switzerland, p 265

    Google Scholar 

  • Peri PL, Gargaglione V, Martínez Pastur G, Lencinas MV (2010) Carbon accumulation along a stand development sequence of Nothofagus antarctica forests across a gradient in site quality in Southern Patagonia. For Ecol Manage 260:229–237

    Google Scholar 

  • Peri PL, Hansen NE, Bahamonde HA, Lencinas MV, Von Müller AR, Ormaechea S, Gargaglione V, Soler R, Tejera L, Lloyd CE, Martínez Pastur G (2016a) Silvopastoral systems under native forest in Patagonia, Argentina. In: Dube F, Varella A (eds) Silvopastoral Systems in Southern South America. Springer, Bern, Switzerland, pp 117–168

    Google Scholar 

  • Peri PL, Lencinas MV, Bousson J, Lasagno R, Soler R, Bahamonde HA, Martínez Pastur G (2016b) Biodiversity and ecological long-term plots in Southern Patagonia to support sustainable land management: the case of PEBANPA network. J Nat Conserv 34:51–64

    Google Scholar 

  • Peri PL, López D, Rusch V, Rusch G, Rosas YM, Martínez Pastur G (2017) State and transition model approach in native forests of Southern Patagonia (Argentina): linking ecosystemic services, thresholds and resilience. Int J Biodiv Sci Ecosyst Serv Manage 13(2):105–118

    Google Scholar 

  • Phalan B, Onial M, Balmford A, Green RE (2011) Reconciling food production and biodiversity conservation: Land sharing and land sparing compared. Science 333:1289–1291

    CAS  PubMed  Google Scholar 

  • Pinto Correia DL, Raulier F, Filotas E, Bouchard M (2017) Stand height and cover type complement forest age structure as a biodiversity indicator in boreal and northern temperate forest management. Ecol Ind 72:288–296

    Google Scholar 

  • Promis A, Schindler D, Reif A, Cruz G (2009) Solar radiation transmission in and around canopy gaps in an uneven-aged Nothofagus betuloides forest. Int J Biomet 53(4):355–367

    Google Scholar 

  • Ratcliffe S, Wirth Ch, Jucker T, van der Plas F, Scherer-Lorenzen M, Verheyen K, Allan E, Benavides R, Bruelheide H, Ohse B, Paquette A, Ampoorter E, Bastias C, Bauhus J, Bonal D, Bouriaud O, Bussotti F, Carnol M, Castagneyrol B, Chećko E, Muhie Dawud S, De Wandeler H, Domisch T, Finér L, Fischer M, Fotelli M, Gessler A, Granier A, Grossiord Ch, Guyot V, Haase J, Hättenschwiler S, Jactel H, Jaroszewicz B, Joly F, Kambach S, Kolb S, Koricheva J, Liebersgesell M, Milligan H, Müller S, Muys B, Nguyen D, Nock C, Pollastrini M, Purschke O, Radoglou K, Raulund-Rasmussen K, Roger F, Ruiz-Benito P, Seidl R, Selvi F, Seiferling I, Stenlid J, Valladares F, Vesterdal L, Baeten L (2017) Biodiversity and ecosystem functioning relations in European forests depend on environmental context. Ecol Let 20(11):1414–1426

    Google Scholar 

  • Romanyà J, Fons J, Sauras-Year T, Gutiérrez E, Vallejo VR (2005) Soil-plant relationships and tree distribution in old growth Nothofagus betuloides and Nothofagus pumilio forests of Tierra del Fuego. Geoderma 124(1):169–180

    Google Scholar 

  • Rosas YM, Peri PL, Lencinas MV, Martínez Pastur G (2019) Potential biodiversity map of understory plants for Nothofagus forests in Southern Patagonia: analyses of landscape, ecological niche and conservation values. Sci Tot Environ 682:301–309

    CAS  Google Scholar 

  • Sandifer PA, Sutton-Grier AE, Ward BP (2015) Exploring connections among nature, biodiversity, ecosystem services, and human health and well-being: opportunities to enhance health and biodiversity conservation. Ecosyst Ser 12:1–15

    Google Scholar 

  • Soler R, Schindler S, Lencinas MV, Peri PL, Martínez Pastur G (2016) Why biodiversity increases after variable retention harvesting: a meta-analysis for southern Patagonian forests. For Ecol Manage 369:161–169

    Google Scholar 

  • Soler R, Espelt JM, Lencinas MV, Peri PL, Martínez Pastur G (2017) Masting has different effects on seed predation by insects and birds in Antarctic beech forests with no influence of forest management. For Ecol Manage 400:173–180

    Google Scholar 

  • Spagarino C, Martínez Pastur G, Peri PL (2001) Changes in Nothofagus pumilio forest biodiversity during the forest management cycle: Insects. Biodiv Conserv 10(12):2077–2092

    Google Scholar 

  • Toro Manríquez M, Soler R, Lencinas MV, Promis A (2019) Canopy composition and site are indicative of mineral soil conditions in Patagonian mixed Nothofagus forests. Ann For Sci 76:e117

    Google Scholar 

  • Veldman JW, Buisson E, Durigan G, Wilson Fernandes G, Le Stradic S, Mahy G, Negreiros D, Overbeck G, Veldman R, Zaloumis NP, Putz F, Bond W (2015) Toward an old-growth concept for grasslands, savannas, and woodlands. Front Ecol Environ 13(3):154–162

    Google Scholar 

  • Wesely N, Fraver S, Kenefic LS, Weiskittel AR, Ruel JC, Thompson ME, White AS (2018) Structural attributes of old-growth and partially harvested northern white-cedar stands in northeastern North America. Forests 9:e376

    Google Scholar 

Download references

Acknowledgements

To the researchers, technicians, students and ownerships (ranch and sawmill companies) that support this research in the long-term. It was impossible to obtain these invaluable data without their disinterested and unconditional help.

Funding

This research was conducted with funds provided by PICT2012-1968 ANPCyT-Argentina (Monitoreo y evaluación de plantas vasculares, artrópodos y aves en ambientes de Patagonia Sur para la identificación de bioindicadores de actividades agroforestales y el desarrollo de estrategias de conservación), and PUE2016 CONICET-Argentina (Sinergias y conflictos entre las actividades económicas y los socio-ecosistemas de Tierra del Fuego: Mantenimiento de la productividad y los servicios ecosistémicos en el largo plazo).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo J. Martínez Pastur.

Ethics declarations

Ethical statement

The authors inform that there are no conflicts of interest in the content of this article, and does not contain any studies with human or animal subjects.

Additional information

Communicated by Lilly O Rodriguez Bayona.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Forest and plantation biodiversity.

Appendix

Appendix

See Table 5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez Pastur, G.J., Rosas, Y.M., Cellini, J.M. et al. Conservation values of understory vascular plants in even- and uneven-aged Nothofagus antarctica forests. Biodivers Conserv 29, 3783–3805 (2020). https://doi.org/10.1007/s10531-020-02049-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-020-02049-8

Keywords

Navigation