Skip to main content
Log in

Enhanced abundance of tintinnids under elevated CO2 level from coastal Bay of Bengal

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

The role of microzooplankton (MZP) in the pelagic trophodynamics is highly significant, but the responses of marine MZP to increasing CO2 levels are rather poorly understood. Hence the present study was undertaken to understand the responses of marine plankton to increasing CO2 concentrations. Natural water samples from the coastal Bay of Bengal were incubated under the ambient condition and high CO2 levels (703–711 μatm) for 5 days in May and June 2010. A significant negative correlation was obtained between phytoplankton and MZP abundance which indicated that phytoplankton community structure can considerably be controlled by MZP in this region. The average relative abundances of tintinnids under elevated CO2 levels were found to be significantly higher (68.65 ± 5.63% in May; 85.46 ± 9.56% in June) than observed in the ambient condition (35.68 ± 6.83% in May; 79 ± 5.36% in June). The observed dominance of small chain forming diatom species probably played a crucial role as they can be potentially grazed by tintinnids. This fact was strengthened by the observed high negative correlations between the relative abundance of major phytoplankton and tintinnids. Moreover, particulate organic carbon and total bacterial counts were also enhanced under elevated CO2 level and can serve as additional food source for ciliates. The observed responses of tintinnids to increasing CO2 might have multiple impacts on the energy transfer, nutrient and carbon cycling in the coastal water. The duration of the present study was relatively short and therefore further investigation on longer time scale needs to be done and might give us a better insight about phytoplankton and MZP species succession under elevated CO2 level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Balasubramanian T, Murugesan P, Vijayalakshmi S et al (2009) Marine Plankton-A field guide, Campus program. Ministry of Earth Sciences, Government of India, pp 43–104

  • Barcelos e Ramos J, Biswas H, Schulz KG, LaRoche J, Riebesell U (2007) Effect of rising atmospheric carbon dioxide on the marine nitrogen fixer Trichodesmium. Global Biogeochem Cycles 21:GB2028. doi:10.1029/2006GB002898

  • Biswas H, Cros A, Yadav K, Venkata Ramana V, Prasad VR, Acharyya T (2011) The response of a natural phytoplankton community from the Godavari River Estuary to increasing CO2 concentration during the pre-monsoon period. J Exp Mar Biol Ecol 407:284–293

    Google Scholar 

  • Boettjer D, Morales (2005) Microzooplankton grazing in a coastal empayment off Concepcion, Chile (36°S) during non-upwelling conditions. J Plankton Res 27(4):383–391

    Article  CAS  Google Scholar 

  • Boyd PW, Strzepek R, Fu F, Hutchins DA (2010) Environmental ambient condition of open-ocean phytoplankton groups: now and in the future. Limnol Oceanogr 55(3):1353–1376

    Article  CAS  Google Scholar 

  • Burkill PH, Mantoura RFC, Llewellyn CA, Owens NJP (1987) Microzooplankton grazing and selectivity of phytoplankton in coastal waters. Mar Biol 93:581–590

    Article  CAS  Google Scholar 

  • Buskey EJ (1997) Behavioral components of feeding selectivity of the heterotrophic dinoflagellate Protoperidinium pellucidum. Mar Ecol Prog Ser 153:77–89

    Article  Google Scholar 

  • Calbet A, Landry M (2004) Phytoplankton growth, microzooplankton grazing and carbon cycling in marine systems. Limnol Oceanogr 49(1):51–57

    Article  CAS  Google Scholar 

  • Capriulo GM, Sherr EB, Sherr BF (1991) Trophic behaviour and related community feeding activities of heterotrophic marine protests. In: Reid PC, Turley CM, Burkill PH (eds) Protozoa and their role in marine processes. NATO ASI series, vol 25. Springer, Berlin, pp 219–265

    Chapter  Google Scholar 

  • Caron DA, Goldman JC (1990) Protozoan nutrient regeneration. In: Capriulo GM (ed) Ecology of marine protozoa. Oxford University Press, New York, pp 283–306

    Google Scholar 

  • Dickson AG (2003) Reference materials for oceanic CO2 analysis: a method for the certification of total alkalinity. Mar Chem 80:185–385

    Article  CAS  Google Scholar 

  • Dolan JR (1997) Phosphorus and ammonia excretion by planktonic protists. Mar Geol 139:109–122

    Article  CAS  Google Scholar 

  • Dolan J, Claustre H, Carlotti F, Plounevez S, Moutin T (2002) Microzooplankton diversity: relationships of tintinnid ciliates with resources, competitors and predators from the Atlantic Coast of Morocco to the Eastern Mediterranean. Deep Sea Res I 49:1217–1232

    Article  Google Scholar 

  • Doney SC, Farby VJ, Feely RA, Kleypas A (2009) Ocean acidification: the other CO2 problem. Annu Rev Mar Sci 1:169–192

    Article  Google Scholar 

  • Egge JK, Thingstad TF, Engel A, Riebesell U (2009) Primary production during nutrient-induced blooms at elevated CO2 concentrations. Biogeosci Discuss 4:4385–4410

    Article  Google Scholar 

  • Engel A, Delille B, Jacquet S et al (2004) Transparent exopolymer particles and dissolved organic carbon production by Emiliania huxleyi exposed to different CO2 concentrations: a mesocosm experiment. Aquat Microb Ecol 34:93–104

    Article  Google Scholar 

  • Eppley RW (1972) Temperature and phytoplankton growth in the sea. Fish Bull 70:1063–1085

    Google Scholar 

  • Fenchel T (1987) Ecology of protozoa. The biology of free-living phagotrophic protists. Springer-Verlag, Berlin

    Google Scholar 

  • Feng Y, Warner ME, Shang Y et al (2008) Interactive effects of increased pCO2. Temperature and irradiance on the marine coccolithophore Emiliania huxleyi (Prymnesiophyceae). Eur J Phycol 43:87–98

    Article  CAS  Google Scholar 

  • Feng Y, Hare CE, Leblance K (2009) Effects of increased pCO2 and temperature on the North Atlantic spring bloom: I. The phytoplankton community and biogeochemical cycles. Mar Ecol Prog Ser 388:13–25

    Article  CAS  Google Scholar 

  • Ganapati PN, Subba Rao DV (1958) Quantitative study of plankton off Lawson’s Bay, Waltair. Proc Indian Acad Sci 48:189–210

  • Gatham IJ, Rhee GY (1981) Comparative kinetic studies of nitrate limited growth and nitrate uptake in phytoplankton in continuous culture. J Phycol 17:309–314

    Article  Google Scholar 

  • Gauns M, Madhupratap M, Ramaiah N et al (2005) A comparative accounts of biological productivity characteristics and estimates of carbon fluxes in the Arabian Sea and Bay of Bengal. Deep Sea Res II 52:2003–2017

    Article  Google Scholar 

  • Gifford DJ, Fessenden LM, Garrahan PR, Martin E (1995) Grazing by microzooplankton and mesozooplankton in the high latitude North Atlantic Ocean: spring versus summer dynamics. J Geophys Res 100:6665–6675

    Article  CAS  Google Scholar 

  • Godhantaraman N (1994) Species composition and abundance of tintinnid and copepods in the Pichavaram mangroves (South India). Cienc Mar 20:371–391

    Google Scholar 

  • Godhantaraman N (2001) Seasonal variations in taxonomic composition, abundance and food web relationship of microzooplankton in estuarine and mangrove waters, Parangipettai region, Southeast coast of India. Indian J Mar Sci 30:151–160

    CAS  Google Scholar 

  • Godhantaraman N, Krishnamurthy K (1997) Experimental studies on food habits of tropical microzooplankton (prey-predator relationship). Indian J Mar Sci 26:345–349

    Google Scholar 

  • Godhantaraman N, Uye S (2001) Geographical variations in abundance, biomass and trophodynamic role of microzooplankton across an inshore–offshore gradient in the Inland Sea of Japan and adjacent Pacific Ocean. Plankton Biol Ecol 48(1):19–27

    Google Scholar 

  • Goldman JC, Caron DA, Dennett MR (1987) Nutrient cycling in a microflagellate food web chain: IV phytoplankton-microflagellate interactions. Mar Ecol Prog Ser 38:75–87

    Article  CAS  Google Scholar 

  • Gomes HR, Goes J, Saino T (2000) Influence of physical processes and freshwater discharge on the seasonality of phytoplankton regime in the Bay of Bengal. Cont Shelf Res 20(3):313–330

    Article  Google Scholar 

  • Hare CE, Leblanc K, DiTullio GR et al (2007) Consequences of increased temperature and CO2 for phytoplankton community structure in the Bering Sea. Mar Ecol Prog Ser 352:9–16

    Article  CAS  Google Scholar 

  • Hasle GR, Syversten EE (1997) Marine diatoms. In: Tomas CR (ed) Identifying marine phytoplankton. Academic Press, San Diego, pp 5–385

    Chapter  Google Scholar 

  • Hein M, Sand-Jensen K (1997) CO2 increases oceanic primary production. Nature 388:526–527

    Article  CAS  Google Scholar 

  • Hobbie JE, Daley RJ, Jasper S (1977) Use of nucleopore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol 33:1225–1228

    PubMed  CAS  Google Scholar 

  • IPCC (2007) In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Jyothibabu R, Madhu NV, Jayalakshmi KV, Balachandran KK, Shiyas CA, Martin GD, Nair KKC (2006a) Impact of fresh water influx on microzooplankton mediated food web in a tropical estuary (Cochin backwaters-India). Estuar Coast Shelf Sci 69:505–518

    Article  Google Scholar 

  • Jyothibabu R, Madhu NV, Maheswaran PA et al (2006b) Environmentally-related of symbiotic associations of heterotrophic dinoflagellates with cyanobacteria in the Bay of Bengal. Symbiosis 42:51–58

    Google Scholar 

  • Jyothibabu R, Madhu NV, Maheswaran KV et al (2008) Seasonal variation of microzooplankton (20–200 μm) and its possible implications on the vertical carbon flux in the western Bay of Bengal. Cont Shelf Res 28(6):737–755

    Article  Google Scholar 

  • Karayanni H, Chrustaki, Van Wambeke F, Denis M, Moutin T (2005) Influence of ciliated protozoa and heterotrophic nanoflagellates on the fate of primary production in the northeast Atlantic Ocean. J Geophys Res 110:C07S15. doi:10.1029/2004JC002602

  • Kim JM, Lee KS, Kang K (2006) The effect of seawater CO2 concentration on growth of a natural phytoplankton assemblage in a ambient controlled mesocosm experiment. Limnol Oceanogr 51:1629–1636

    Google Scholar 

  • Kumar S, Ramesh R, Sheshshayee MS, Sardesai S, Patel PP (2005) Signature of terrestrial influence on nitrogen isotopic composition of suspended particulate matter in the Bay of Bengal. Curr Sci 88(5):770–774

    CAS  Google Scholar 

  • Kumar SP, Narveka J, Nuncio M, Kuma A, Ramaiah N, Sardesai S, Gauns M, Veronica Fernandes V, Paul J (2010) Is the biological productivity in the Bay of Bengal light limited. Curr Sci 98(10):1331–1339

    CAS  Google Scholar 

  • Landry MR, Calbet A (2004) Microzooplankton production in the oceans. ICES J Mar Sci 61:501–507. doi:10.1016/j.icesjms.2004.03.011

    Article  Google Scholar 

  • Landry MR, Hassett RP (1982) Estimating the grazing impact of marine micro-zooplankton. Mar Biol 67:283–288

    Article  Google Scholar 

  • Landry MR, Monge BC, Selph KE (1993) Time-dependency of microzooplankton grazing and phytoplankton growth in the Subarctic Pacific. Prog Oceanogr 32:239–258

    Article  Google Scholar 

  • Landry MR, Barber RT, Bidigare RR et al (1997) Iron and grazing constraints on primary production in the central equatorial Pacific: an EqPac synthesis. Limnol Oceanogr 42:405–418

    Article  CAS  Google Scholar 

  • Lewis E, Wallace DWR (1998) CO2SYS_calc_DOS_Original: 1998. Program developed for CO2 system calculations. ORNL/CDIAC-105. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge

    Book  Google Scholar 

  • Liu KK, Kaplan IR (1989) The eastern tropical Pacific as a source of 15N-enriched nitrate in seawater off southern California. Limnol Oceanogr 34:820–830

    Article  CAS  Google Scholar 

  • Liu H, Suzuki K, Saino T (2002) Phytoplankton growth and microzooplankton grazing in the Subarctic Pacific Ocean and the Bering Sea during summer 1999. Deep Sea Res I 49:363–375

    Article  CAS  Google Scholar 

  • Lopez-Sandoval DC, Emiliomaran NI et al (2010) Particulate and dissolved primary production by contrasting phytoplankton assemblages during mesocosm experiments in the Ría de Vigo (NW Spain). J Plankton Res 32(9):1231–1240

    Article  CAS  Google Scholar 

  • Madhu NV, Jyothibabu R, Maheswaran PA, Gerson VJ, Gopalakrishnan TC, Nair KKC (2006) Lack of seasonality in phytoplankton standing stock (chlorophyll a) and production in the western Bay of Bengal. Cont Shelf Res 26:1868–1883

    Article  Google Scholar 

  • McManus GB, Costas BA, Dam HG et al (2007) Microzooplankton grazing of phytoplankton in a tropical upwelling region. Hydrobiology 575(1):69–81

    Article  Google Scholar 

  • Monger BC, Landry MR, Brown SL (1999) Feeding selection of heterotrophic marine nanoflagellates based on the surface hydrophobicity of their picoplankton prey. Limnol Oceanogr 44:1917–1927

    Article  CAS  Google Scholar 

  • Nagata T (2000) Production mechanisms of dissolved organic matter. In: Kirchman DL (ed) Microbial ecology of the oceans. Wiley-Liss, New York, pp 121–152

    Google Scholar 

  • Newell GE, Newell RC (1973) Marine Plankton: A practical guide (Hutchinson biological monographs), Hutchinson Educational, London, 244 pp

  • Paul TJ, Ramaiah N, Gauns M, Fernades V (2007) Predominance of a few diatom species among the highly diverse microphytoplankton assemblages in the Bay of Bengal. Mar Biol 152(1):63–75

    Article  Google Scholar 

  • Qasim SZ (1977) Biological productivity of the Indian Ocean. Indian J Mar Sci 6:122–137

    CAS  Google Scholar 

  • Quevedo M, Anadón R (2001) Protist control of phytoplankton growth in the subtropical North-east Atlantic. Mar Ecol Prog Ser 221:29–38

    Article  Google Scholar 

  • Radhakrishna K (1975) Primary productivity of the Bay of Bengal during March April. Indian J Mar Sci 1:58–60

    Google Scholar 

  • Rassoulzadegan F, Etienne M (1981) Grazing rate of the tintinnid Stenosemella ventricosa (Clap and Lachm) Jorg. on the spectrum of naturally occurring particulate matter from a Mediterranean neritic area. Limnol Oceanogr 26:258–270

    Article  Google Scholar 

  • Richoux NB, Froneman PW (2009) Plankton trophodynamics at the subtropical convergence, Southern Oceans. J Plankton Res 31(9):1059–1073

    Article  CAS  Google Scholar 

  • Riebesell U (2004) Effects of CO2 enrichment on marine phytoplankton. J Oceanogr 60:719–729

    Article  CAS  Google Scholar 

  • Riebesell U, Fabry VJ, Hansson L, Gattuso JP (eds) (2010) Guide to best practices for ocean acidification research and data reporting. Publications Office of the European Union, Luxembourg

  • Rose JM, Feng Y, Globler CJ et al (2009) Effects of increased pCO2 and temperature on the North Atlantic spring bloom. II. Microzooplankton abundance and grazing. Mar Ecol 388:27–40

    Article  CAS  Google Scholar 

  • Sanders RW, Caron DA, Berninger UG (1992) Relationship between bacteria and heterotrophic nanoplankton in marine and fresh waters: an inter ecosystem comparison. Mar Ecol Prog Ser 86:1–14

    Article  Google Scholar 

  • Sharp JH (1975) Improved analysis for particulate organic carbon and nitrogen from sweater. Limnol Oceanogr 19:984–989

    Article  Google Scholar 

  • Sherr BF, Sherr EB (1994) Bacteriovory and herbivory: key roles of phagotrophic protists in pelagic food webs. Microb Ecol 28:223–235

    Article  Google Scholar 

  • Splitter P (1973) Feeding experiments with tintinnids. Oikos 15:128–132

    Google Scholar 

  • Stelfox-Widdicombe CE, Edward ES, Burkill PH, Sleigh MA (2000) Microzooplankton grazing activity in the temperate and subtropical NE Atlantic: summer 1996. Mar Ecol Prog Ser 208:1–12

    Article  Google Scholar 

  • Stoecker DK, Capuzzo JM (1990) Predation on protozoa: its importance to zooplankton. J Plankton Res 12:891–908

    Article  Google Scholar 

  • Stoecker DK, Gallager SM, Langdon CJ, Davis LH (1995) Particle capture by Favella sp. (Ciliata, Tintinnina). J Plankton Res 17:1105–1124

    Article  Google Scholar 

  • Strickland JDH, Parsons TR (1972) A practical handbook of seawater analysis, 2nd edn. Bulletin 167. Fisheries Research Board of Canada, Ottawa

  • Strom S (2002) Novel interactions between phytoplankton and microzooplankton: their influence on the coupling between growth and grazing rates in the sea. Hydrobiology 480:41–54

    Article  Google Scholar 

  • Strom SL, Benner R, Ziegler S, Dagg MJ (1997) Planktonic grazers are a potentially important source of marine dissolved organic carbon. Limnol Oceanogr 42:1364–1374

    Article  CAS  Google Scholar 

  • Strom SL, Brainard MA, Holmes JL, Olson MB (2001) Phytoplankton blooms are strongly impacted by microzooplankton grazing in coastal North Pacific waters. Mar Biol 38:355–368

    Article  Google Scholar 

  • Suffrian K, Simonelli P, Nejstgaard JC et al (2008) Microzooplankton grazing and phytoplankton growth in marine ecosystems with increased CO2 levels. Biogeosci Discuss 5:411–433

    Article  Google Scholar 

  • Sun J, Feng Y, Zhang Y, Hutchins DA (2007) Fast microzooplankton grazing on fast-growing, low-biomass phytoplankton: a case study in spring in Chesapeake Bay, Delaware Inland Bays and Delaware Bay. Hydrobiology 589:127–139

    Article  Google Scholar 

  • Sykes JB (1981) An illustrated guide to the diatoms of British coastal plankton. Field Study Council, Shrewsbury (journal offprint)

    Google Scholar 

  • Tortell PD, DiTullio GR, Sigman DM, Morel FM (2002) CO2 effects on taxonomic composition and nutrient utilization in an Equatorial Pacific phytoplankton assemblage. Mar Ecol Prog Ser 236:37–43

    Article  Google Scholar 

  • Tortell PD, Payne CD, Li Y (2008) CO2 sensitivity of Southern Ocean phytoplankton. Geophys Res Lett 35:L0460. doi:10.1029/2007GL032583

    Article  Google Scholar 

  • Wolf-Gladrow D, Riebesell U, Burkhardt S, Bijma J (1999) Direct effects of CO2 concentration on growth and isotopic composition of marine plankton. Tellus Ser B 51:461–476

    Article  Google Scholar 

  • Yoshimura T, Nishioka J, Suzuki K et al (2009) Impacts of elevated CO2 on phytoplankton community composition and organic carbon dynamics in nutrient-depleted Okhotsk Sea surface waters. Biogeosci Discuss 6:4143–4163

    Article  Google Scholar 

  • Zhang LY, Sun J, Liu DY, Yu ZS (2005) Studies on growth rate and grazing mortality rate by microzooplankton of size-fractionated phytoplankton in spring and summer in the Jiaozhou Bay, China. Acta Oceanol Sin 24:85–101

    Google Scholar 

Download references

Acknowledgments

This study was funded by the project SIP-1308 (CSIR funding). We acknowledge the financial support from the Indian Academy of Science to one of the co-authors Dr. Subhadra Devi Gadi for conducting the study. We would like to express our sincere gratitude to the director NIO and the scientist-in-charge (RC, Visakhapatnam) for financial and moral support. We are thankful to Mr. Praven Kumar and V. Rajendra Prasad for analyzing POC/PON samples and dissolved organic carbon. We are thankful to all of our colleagues and students for their active cooperation during this study. The NIO contribution number is 5087.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haimanti Biswas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biswas, H., Gadi, S.D., Ramana, V.V. et al. Enhanced abundance of tintinnids under elevated CO2 level from coastal Bay of Bengal. Biodivers Conserv 21, 1309–1326 (2012). https://doi.org/10.1007/s10531-011-0209-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-011-0209-7

Keywords

Navigation