Skip to main content

Advertisement

Log in

Metabolomic profiling reveals shifts in defenses of an invasive plant

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Post-introduction evolution of plant defense traits is fundamental to several important theories for plant invasiveness. Research on chemical defense traits of invasive plants has focused mostly on targeted chemical analysis, however, such analyses restrict novel insights to known compounds. Here, we provide an untargeted metabolomic analysis of native and invasive Purple Loosestrife populations and we experimentally test if admixture between introduced populations provides a basis for rapid defense chemistry evolution. Invasive populations showed improved growth and generalist herbivore resistance, but lower resistance to a specialist weevil, consistent with the Shifting Defense Hypothesis of plant invasions. Metabolomic profiling revealed large shifts in chemistry between native and invasive populations, including differences in alkaloids and flavonoids. Experimental admixture increased chemical diversity and plant growth in the native populations, indicating its potential to fuel rapid evolution, but admixture did not affect generalist and specialist herbivory. Our untargeted metabolomics analysis provides novel insights in the evolutionary changes in the chemistry of invasive plants, and reveals the chemical associations of a shift from defenses against specialist to generalist herbivores in invasive populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data from LC–MS chemical profiling, plant phenotyping and herbivory assays are deposited in the open data repository ZENODO under https://doi.org/10.5281/zenodo.7198269.

References

  • Agren J (1996) Population size, pollinator limitation, and seed set in the self-incompatible herb Lythrum salicaria. Ecology 77:1779–1790

    Article  Google Scholar 

  • Bernays EA, Chapman RF, Macdonald J, Salter JER (1976) Degree of oligophagy in Locusta-Migratoria L. Ecol Entomol 1:223–230

    Article  Google Scholar 

  • Bernhardsson C, Robinson KM, Abreu IN, Jansson S, Albrectsen BR, Ingvarsson PK (2013) Geographic structure in metabolome and herbivore community co-occurs with genetic structure in plant defence genes. Ecol Lett 16:791–798

    Article  PubMed  Google Scholar 

  • Blossey B, Nötzold R (1995) Evolution of increased competitive ability in invasive nonindigenous plants: a hypothesis. J Ecol 83:887–889

    Article  Google Scholar 

  • Blossey B, Skinner LC, Taylor J (2001) Impact and management of purple loosestrife (Lythrum salicaria) in North America. Biodivers Conserv 10:1787–1807

    Article  Google Scholar 

  • Bossdorf O, Prati D, Auge H, Schmid B (2004) Reduced competitive ability in an invasive plant. Ecol Lett 7:346–353

    Article  Google Scholar 

  • Campbell SA, Thaler JS, Kessler A (2013) Plant chemistry underlies herbivore-mediated inbreeding depression in nature. Ecol Lett 16:252–260

    Article  PubMed  Google Scholar 

  • Chun YJ, Nason JD, Moloney KA (2009) Comparison of quantitative and molecular genetic variation of native vs. invasive populations of purple loosestrife (Lythrum salicaria L., Lythraceae). Mol Ecol 18:3020–3035

    Article  CAS  PubMed  Google Scholar 

  • Cipollini D, Mbagwu J, Barto K, Hillstrom C, Enright S (2005) Expression of constitutive and inducible chemical defenses in native and invasive populations of Alliaria petiolata. J Chem Ecol 31:1255–1267

    Article  CAS  PubMed  Google Scholar 

  • Clay K (1988) Fungal endophytes of grasses: a defensive mutualism between plants and fungi. Ecology 69:10–16

    Article  Google Scholar 

  • Colautti RI, Barrett SCH (2013) Rapid adaptation to climate facilitates range expansion of an invasive plant. Science 342:364–366

    Article  CAS  PubMed  Google Scholar 

  • Courant F, Pinel G, Bichon E, Monteau F, Antignac JP, Le Bizec B (2009) Development of a metabolomic approach based on liquid chromatography-high resolution mass spectrometry to screen for clenbuterol abuse in calves. Analyst 134:1637–1646

    Article  CAS  PubMed  Google Scholar 

  • Doorduin LJ, Vrieling K (2011) A review of the phytochemical support for the shifting defence hypothesis. Phytochem Rev 10:99–106

    Article  CAS  PubMed  Google Scholar 

  • Eckert CG, Manicacci D, Barrett SCH (1996) Frequency-dependent selection on morph ratios in tristylous Lythrum salicaria (Lythraceae). Heredity 77:581–588

    Article  Google Scholar 

  • Ellstrand NC, Schierenbeck KA (2000) Hybridisation as a stimulus for the evolution of invasiveness in plants? Proc Natl Acad Sci U S A 97:7043–7050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endriss SB, Alba C, Norton AP, Pysek P, Hufbauer RA (2018) Breakdown of a geographic cline explains high performance of introduced populations of a weedy invader. J Ecol 106:699–713

    Article  Google Scholar 

  • Felker-Quinn E, Schweitzer JA, Bailey JK (2013) Meta-analysis reveals evolution in invasive plant species but little support for evolution of increased competitive ability (EICA). Ecol Evol 3:739–751

    Article  PubMed  PubMed Central  Google Scholar 

  • Francis RA (2011) A handbook of global freshwater invasive species. Taylor & Francis, Hoboken, p 1

    Google Scholar 

  • Fujita E, Fuji K, Bessho K, Sumi A, Nakamura S (1967) The structures of lythranine, lythranidine, and lythramine, novel alkaloids from Lythrum anceps Makino. Tetrahedron Lett 8:4595–4600

    Article  Google Scholar 

  • Fujita E, Saeki Y, Ochiai M (1972) Investigation of the neutral constituents of Lythrum salicaria L. Bull Inst Chem Res Kyoto Univ 50:327–331

    CAS  Google Scholar 

  • Hahlbrock K, Scheel D (1989) Physiology and molecular-biology of phenylpropanoid metabolism. Annu Rev Plant Phys 40:347–369

    Article  CAS  Google Scholar 

  • Hamback PA, Pettersson J, Ericson L (2003) Are associational refuges species-specific? Funct Ecol 17:87–93

    Article  Google Scholar 

  • Hight SD, Blossey B, Laing J, Declerckfloate R (1995) Establishment of insect biological-control agents from Europe against Lythrum-Salicaria in North-America. Environ Entomol 24:967–977

    Article  Google Scholar 

  • Houghton-Thompson J, Prince HH, Smith JJ, Hancock JF (2005) Evidence of hybridization between Lythrum salicaria (Purple Loosestrife) and L-alatum (winged loosestrife) in North America. Ann Bot-Lond 96:877–885

    Article  CAS  Google Scholar 

  • Jones CG, Firn RD (1991) On the evolution of plant secondary chemical diversity. Philos Trans R Soc B 333:273–280

    Article  Google Scholar 

  • Joshi S, Tielbörger K (2012) Response to enemies in the invasive plant Lythrum salicaria is genetically determined. Ann Bot-Lond 110:1403–1410

    Article  Google Scholar 

  • Joshi J, Vrieling K (2005) The enemy release and EICA hypothesis revisited: incorporating the fundamental difference between specialist and generalist herbivores. Ecol Lett 8:704–714

    Article  Google Scholar 

  • Joshi S, Gruntman M, Bilton M, Seifan M, Tielborger K (2014) A comprehensive test of evolutionarily increased competitive ability in a highly invasive plant species. Ann Bot 114:1761–1768

    Article  PubMed  PubMed Central  Google Scholar 

  • Ju RT, Ma D, Siemann E, Liu X, Wu JH, Li B (2018) Invasive Spartina alterniflora exhibits increased resistance but decreased tolerance to a generalist insect in China. J Pest Sci 92:823–833

    Article  Google Scholar 

  • Kalske A, Mutikainen P, Muola A, Scheepens JF, Laukkanen L, Salminen JP et al (2014) Simultaneous inbreeding modifies inbreeding depression in a plant-herbivore interaction. Ecol Lett 17:229–238

    Article  PubMed  Google Scholar 

  • Keurentjes JJB, Fu JY, de Vos CHR, Lommen A, Hall RD, Bino RJ et al (2006) The genetics of plant metabolism. Nat Genet 38:842–849

    Article  CAS  PubMed  Google Scholar 

  • Kim YO, Lee EJ (2011) Comparison of phenolic compounds and the effects of invasive and native species in East Asia: support for the novel weapons hypothesis. Ecol Res 26:87–94

    Article  Google Scholar 

  • Kowalski KP, Bacon C, Bickford W, Braun H, Clay K, Leduc-Lapierre M et al (2015) Advancing the science of microbial symbiosis to support invasive species management: a case study on Phragmites in the Great Lakes. Front Microbiol 6:95

    Article  PubMed  PubMed Central  Google Scholar 

  • Lankau RA, Nuzzo V, Spyreas G, Davis AS (2009) Evolutionary limits ameliorate the negative impact of an invasive plant. P Natl Acad Sci U S A 106:15362–15367

    Article  CAS  Google Scholar 

  • Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:386–391

    Article  Google Scholar 

  • Leiss KA, Maltese F, Choi YH, Verpoorte R, Klinkhamer PGL (2009) Identification of chlorogenic acid as a resistance factor for thrips in chrysanthemum. Plant Physiol 150:1567–1575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis KC, Bazzaz FA, Liao Q, Orians CM (2006) Geographic patterns of herbivory and resource allocation to defense, growth, and reproduction in an invasive biennial, Alliaria petiolata. Oecologia 148:384–395

    Article  PubMed  Google Scholar 

  • Liu M, Pan XY, Zhang ZJ, van Kleunen M, Li B (2020) Testing the shifting defense hypothesis for constitutive and induced resistance and tolerance. J Pest Sci 93:355–364

    Article  Google Scholar 

  • Macel M, Bruinsma M, Dijkstra SM, Ooijendijk T, Niemeyer HM, Klinkhamer PGL (2005) Differences in effects of pyrrolizidine alkaloids on five generalist insect herbivore species. J Chem Ecol 31:1493–1508

    Article  CAS  PubMed  Google Scholar 

  • Macel M, van Dam NM, Keurentjes JJB (2010) Metabolomics: the chemistry between ecology and genetics. Mol Ecol Resour 10:583–593

    Article  CAS  PubMed  Google Scholar 

  • Macel M, de Vos RCH, Jansen JJ, van der Putten WH, van Dam NM (2014) Novel chemistry of invasive plants: exotic species have more unique metabolomic profiles than native congeners. Ecol Evol 4:2777–2786

    Article  PubMed  PubMed Central  Google Scholar 

  • Manea A, Tabassum S, Carthey AJR, Cameron DNS, Leishman MR (2019) Evidence for a shift in defence driving the invasion success of Acacia longifolia in Australia. Biol Invasions 21:2211–2220

    Article  Google Scholar 

  • Maron JL, Vila M, Arnason J (2004) Loss of enemy resistance among introduced populations of St. John’s Wort (Hypericum perforatum). Ecology 85:3243–3253

    Article  Google Scholar 

  • Müller-Schärer H, Schaffner U, Steinger T (2004) Evolution in invasive plants: implications for biological control. Trends Ecol Evol 19:417–422

    Article  PubMed  Google Scholar 

  • Quinn RA, Vermeij MJ, Hartmann AC, Galtier d’Auriac I, Benler S, Haas A et al (2016) Metabolomics of reef benthic interactions reveals a bioactive lipid involved in coral defence. Proc R Soc Lond B Bio 283:20160469

    Google Scholar 

  • Rannar S, Geladi P, Lindgren F, Wold S (1995) A pls kernel algorithm for data sets with many variables and few objects. 2. Cross-validation. Missing Data Ex J Chemometr 9:459–470

    Google Scholar 

  • Rauha JP, Wolfender JL, Salminen JP, Pihlaja K, Hostettmann K, Vuorela H (2001) Characterization of the polyphenolic composition of purple loosestrife (Lythrum salicaria). Z Naturforsch C 56:13–20

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Joshi J, Tielborger K, Verhoeven KJF, Macel M (2018a) Costs and benefits of admixture between foreign genotypes and local populations in the field. Ecol Evol 8:3675–3684

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi J, Macel M, Tielborger K, Verhoeven KJF (2018b) Effects of admixture in native and invasive populations of Lythrum salicaria. Biol Invasions 20:2381–2393

    Article  PubMed  PubMed Central  Google Scholar 

  • Siemann E, Rogers WE (2001) Genetic differences in growth of an invasive tree species. Ecol Lett 4:514–518

    Article  Google Scholar 

  • Stige LC, Chan KS, Zhang ZB, Frank D, Stenseth NC (2007) Thousand-year-long Chinese time series reveals climatic forcing of decadal locust dynamics. P Natl Acad Sci U S A 104:16188–16193

    Article  CAS  Google Scholar 

  • Strauss SY, Rudgers JA, Lau JA, Irwin RE (2002) Direct and ecological costs of resistance to herbivory. Trends Ecol Evol 17:278–285

    Article  Google Scholar 

  • Stuckey RL (1980) Distributional history of Lythrum salicaria (Purple Loosestrife) in North America. Bartonia 47:3–20

    Google Scholar 

  • Sumner LW, Mendes P, Dixon RA (2003) Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry 62:817–836

    Article  CAS  PubMed  Google Scholar 

  • Thompson DQ, Stuckey RL, Thompson EB (1987) Spread impact and control of purple loosestrife (lythrum-salicaria) in north american wetlands, vol 2. United States Department of the Interior Fish and Wildlife Service, Washington, pp 1–55

    Google Scholar 

  • Treutter D (2006) Significance of flavonoids in plant resistance: a review. Environ Chem Lett 4:147–157

    Article  CAS  Google Scholar 

  • van Kleunen M, Schmid B (2003) No evidence for an evolutionary increased competitive ability in an invasive plant. Ecology 84:2816–2823

    Article  Google Scholar 

  • Verhoeven KJF, Macel M, Wolfe LM, Biere A (2011) Population admixture, biological invasions and the balance between local adaptation and inbreeding depression. Proc R Soc B-Biol Sci 278:2–8

    Article  Google Scholar 

  • Wan J, Huang B, Yu H, Peng S (2018) Reassociation of an invasive plant with its specialist herbivore provides a test of the shifting defence hypothesis. J Ecol 107:361–371

    Article  Google Scholar 

  • Weckwerth W (2003) Metabolomics in systems biology. Annu Rev Plant Biol 54:669–689

    Article  CAS  PubMed  Google Scholar 

  • Westerhuis JA, Hoefsloot HCJ, Smit S, Vis DJ, Smilde AK, van Velzen EJJ et al (2008) Assessment of PLSDA cross validation. Metabolomics 4:81–89

    Article  CAS  Google Scholar 

  • Wikstrom SA, Steinarsdottir MB, Kautsky L, Pavia H (2006) Increased chemical resistance explains low herbivore colonization of introduced seaweed. Oecologia 148:593–601

    Article  PubMed  Google Scholar 

  • Willis AJ, Thomas MB, Lawton JH (1999) Is the increased vigour of invasive weeds explained by a trade-off between growth and herbivore resistance? Oecologia 120:632–640

    Article  PubMed  Google Scholar 

  • Willis AJ, Memmott J, Forrester RI (2000) Is there evidence for the post-invasion evolution of increased size among invasive plant species? Ecol Lett 3:275–283

    Article  Google Scholar 

  • Wink M (1992) The role of quinolizidine alkaloids in plant-insect interactions. Insect-Plant Interact 4:131–166

    Google Scholar 

  • Xu HY, Li W, Schilmiller AL, van Eekelen H, de Vos RCH, Jongsma MA et al (2019) Pyrethric acid of natural pyrethrin insecticide: complete pathway elucidation and reconstitution in Nicotiana benthamiana. New Phytol 223:751–765

    Article  CAS  PubMed  Google Scholar 

  • Yuan Y, Wang B, Zhang S, Tang J, Tu C, Hu S, Yong JWH, Chen X (2013) Enhanced allelopathy and competitive ability of invasive plant Solidago canadensis in its introduced range. J Plant Ecol 6:253–263

    Article  Google Scholar 

  • Zavala JA, Patankar AG, Gase K, Baldwin IT (2004) Constitutive and inducible trypsin proteinase inhibitor production incurs large fitness costs in Nicotiana attenuata. P Natl Acad Sci U S A 101:1607–1612

    Article  CAS  Google Scholar 

  • Zheng YL, Feng YL, Zhang LK, Callaway RM, Valiente-Banuet A, Luo DQ et al (2015) Integrating novel chemical weapons and evolutionarily increased competitive ability in success of a tropical invader. New Phytol 205:1350–1359

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Meta Schönau for facilitating the plant crossing at the Tübingen greenhouses, Sarah Gebauer for help with the experiment, Justin Fulkerson, Kirk Moloney, Claus Holzapfel, Lorenz Henneberg, Jasmin Joshi, and Jörg Müller for collecting seeds, and Bert Schipper for help with the chemical analyses. JS was supported by a grant from the China Scholarship Council (CSC file no. 201206140020). MM was supported by a DFG-SPP 1529 grant from the Deutsche Forschungsgemeinschaft.

Funding

JS was supported by a grant from the China Scholarship Council (CSC file no. 201206140020). MM was supported by a DFG-SPP 1529 grant from the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Contributions

JS, KT, MM and KJFV designed the experiments; JS performed the experiments; MS and RCHdV performed the chemical analyses; JS and MM analyzed the data; JS, KJFV and MM wrote the manuscript with input from all.

Corresponding author

Correspondence to Koen J. F. Verhoeven.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3227 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Stahl, M., de Vos, R.C.H. et al. Metabolomic profiling reveals shifts in defenses of an invasive plant. Biol Invasions 25, 3293–3306 (2023). https://doi.org/10.1007/s10530-023-03109-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-023-03109-0

Keywords

Navigation