Biological Invasions

, Volume 21, Issue 8, pp 2735–2749 | Cite as

Applying landscape structure analysis to assess the spatio-temporal distribution of an invasive legume in the Rhön UNESCO Biosphere Reserve

  • Yves P. KlingerEmail author
  • Sarah Harvolk-Schöning
  • R. Lutz Eckstein
  • Wiebke Hansen
  • Annette Otte
  • Kristin Ludewig
Original Paper


Landscape composition and structure may strongly affect the spread of invasive species in landscapes. Landscape analysis provides a powerful toolset for assessing invasive species invasions over time and for planning control measures. We applied a combination of aerial mapping and landscape analysis to assess the invasion of the legume, Lupinus polyphyllus, in the Rhön UNESCO Biosphere Reserve. The Biosphere Reserve contains different types of large and well-connected grasslands threatened by lupine invasion. We assessed the changes in lupine distribution between 1998 and 2016 in a strictly protected part of the Biosphere Reserve by means of landscape structure analysis. The area invaded by L. polyphyllus doubled from 1998 to 2016. While the number of lupine stands decreased by 25%, stand size on average increased by 300%; stands also became less compact during that period. Furthermore, the degree of invasion of different grassland types changed. In 1998, all investigated grassland types were invaded to equal extents, whereas in 2016, large and well-connected mesic grasslands located close to roads were more heavily invaded than small and remote wet grasslands. Our results show that landscape composition plays an important role for the spread of lupine. Specifically, invasive stand characteristics, such as stand size, form, and connectivity, are crucial for driving the invasion of lupine. Therefore, in addition to landscape composition, invasive stand characteristics should be included in the planning of conservation measures. Overall, aerial mapping combined with landscape analysis provides a cost-effective and practical tool for landscape managers to prioritize invasive control measures.


Protected area Landscape structure Mountain grassland Plant invasions Lupinus polyphyllus 



We would like to thank the German Federal Environmental Foundation (Deutsche Bundesstiftung Umwelt DBU 33637/01-33/2) for funding the study, and namely Reinhard Stock, Volker Wachendörfer, and Franz-Peter Heidenreich for constructive interest in our results. We would also like to thank Torsten Kirchner (Wildlandstiftung Bavaria), Michael Geier, and Tobias Gerlach (Bavarian Administration of the Biosphere Reserve Rhön), as well as Ewald Sauer and Torsten Raab (Hessian Administration of the Biosphere Reserve Rhön Region) for excellent support and cooperation. We greatly thank Johannes P. Gattringer for statistical support and Fang Xu for mapping linear structures. We thank Samantha Serratore for language editing. Lastly, we would like to thank two anonymous reviewers for their valuable feedback that greatly improved the quality of the manuscript.

Supplementary material

10530_2019_2012_MOESM1_ESM.xlsx (12 kb)
Supplementary material 1 (XLSX 12 kb)


  1. Ansong M, Pickering C (2013) Are weeds hitchhiking a ride on your car? A systematic review of seed dispersal on cars. PLoS ONE 8:e80275. CrossRefGoogle Scholar
  2. Auffret AG, Cousins SAO (2013) Grassland connectivity by motor vehicles and grazing livestock. Ecography 36:1150–1157. CrossRefGoogle Scholar
  3. Banks PB, Byrom AE, Pech RP, Dickman CR (2018) Reinvasion is not invasion again. Bioscience 68:792–804. CrossRefGoogle Scholar
  4. Christen D, Matlack G (2006) The role of roadsides in plant invasions: a demographic approach. Conserv Biol 20:385–391. CrossRefGoogle Scholar
  5. Clark TL, Iannone BV, Fei S (2018) Metrics for macroscale invasion and dispersal patterns. J Plant Ecol 11:64–72. CrossRefGoogle Scholar
  6. Dracup M, Turner NC, Tang C, Reader M, Palta J (1998) Responses to abiotic stresses. In: Gladstones JS, Atkins CA, Hamblin J (eds) Lupins as crop plants: biology, production and utilization. CAB International, Wallingford, pp 227–261Google Scholar
  7. DWD (2016) Deutscher Wetterdienst download service for climate data. Accessed 1 Oct 2016
  8. Ellenberg H, Weber HE, Dull R, Wirth V, Werner W, Paulissen D (1992) Zeigerwerte von Pflanzen in Mitteleuropa. [Indicator values of plants in Central Europe]. Scripta Geobotanica 18:1–248Google Scholar
  9. Fenner M, Thompson K (2005) The ecology of seeds. Cambridge University Press, Cambridge, New YorkCrossRefGoogle Scholar
  10. Forman RTT, Godron M (1986) Landscape ecology. Wiley, New YorkGoogle Scholar
  11. Foxcroft LC, Pyšek P, Richardson DM et al (2017) Plant invasion science in protected areas: progress and priorities. Biol Invasions. Google Scholar
  12. Fremstadt E (2010) NOBANIS—Invasive Alien Species Fact Sheet—Lupinus polyphyllus.—From: Online Database of the European Network on Invasive Alien Species—NOBANIS., Date of access 11 Oct 2016
  13. Grebe R (1995) Biosphärenreservat Rhön-Rahmenkonzept für Schutz, Pflege und Entwicklung. [Rhön Biosphere Reserve - Framework concept for its conservation, management and development]. Neumann, RadebeulGoogle Scholar
  14. Gustafson EJ (1998) Quantifying landscape spatial pattern: what is the state of the art? Ecosystems 1:143. CrossRefGoogle Scholar
  15. Gustafson EJ, Parker GR (1994) Using an index of habitat patch proximity for landscape design. Landsc Urban Plan 29:117–130. CrossRefGoogle Scholar
  16. Hejda M (2013) Do species differ in their ability to coexist with the dominant alien Lupinus polyphyllus? A comparison between two distinct invaded ranges and a native range. NeoBiota 17:39–55. CrossRefGoogle Scholar
  17. Hejda M, Štajerová K, Pyšek P (2017) Dominance has a biogeographical component: do plants tend to exert stronger impacts in their invaded rather than native range? J Biogeogr 44:18–27. CrossRefGoogle Scholar
  18. Hiltbrunner E, Aerts R, Bühlmann T et al (2014) Ecological consequences of the expansion of N2-fixing plants in cold biomes. Oecologia 176:11–24. CrossRefGoogle Scholar
  19. Holdaway RJ, Sparrow AD (2006) Assembly rules operating along a primary riverbed—grassland successional sequence. J Ecol 94:1092–1102. CrossRefGoogle Scholar
  20. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363. CrossRefGoogle Scholar
  21. Jonsson M, Straub CS, Didham RK et al (2015) Experimental evidence that the effectiveness of conservation biological control depends on landscape complexity. J Appl Ecol 52:1274–1282. CrossRefGoogle Scholar
  22. Lang S, Blaschke T (2007) Landschaftsanalyse mit GIS [Landscape analysis using GIS]. Ulmer, Stuttgart Lang, Stefan & Tiede, Dirk. (2016) Lang, Tiede—2003—vLATE Extension für ArcGIS—vektorbasiertes Tool zur quantitativen Landschaftsstrukturanalyse [vLate extension for ArcGIS—a vector-based tool for quantitatively assessing landscape structure]- ESRI European UserGoogle Scholar
  23. Lang S, Tiede D (2003) vLATE Extension für ArcGIS – vektorbasiertes Tool zur quantitativen Landschaftsstrukturanalyse [vLate extension for ArcGIS - vector based tool for quantitative landscape analysis] - 18th ESRI European User Conference. Innsbruck, AustriaGoogle Scholar
  24. Lee MR, Bernhardt ES, van Bodegom PM et al (2017) Invasive species’ leaf traits and dissimilarity from natives shape their impact on nitrogen cycling: a meta-analysis. New Phytol 213:128–139. CrossRefGoogle Scholar
  25. Leite M de S, Tambosi LR, Romitelli I, Metzger JP (2013) Landscape ecology perspective in restoration projects for biodiversity conservation: a review. Nat Conserv 11:108–118. CrossRefGoogle Scholar
  26. Lockwood JL, Cassey P, Blackburn TM (2009) The more you introduce the more you get: the role of colonization pressure and propagule pressure in invasion ecology. Divers Distrib 15:904–910. CrossRefGoogle Scholar
  27. Lodge DM, Williams S, MacIsaac HJ et al (2006) Biological invasions: recommendations for U.S. Policy and Management. Ecol Appl 16:2035–2054.[2035:BIRFUP]2.0.CO;2 CrossRefGoogle Scholar
  28. Luftbild, Umwelt, Planung GmbH (2008) Flächendeckende Interpretation und digitale Verarbeitung von analogen Color-Infrarot-Luftbildern (CIR) und einem Vergleich der Ergebnisse mit einer früheren digitalen CIR-Auswertung. [Comprehensive interpretationand digital processing of analog Color Infrared (CIR) aerial images and comparison of the results with a previous digital CIR evaluation.] Assessment on behalf of the administration of Lower FranconiaGoogle Scholar
  29. Lustig A, Stouffer DB, Doscher C, Worner SP (2017) Landscape metrics as a framework to measure the effect of landscape structure on the spread of invasive insect species. Landsc Ecol 32:2311–2325. CrossRefGoogle Scholar
  30. Malik AI, Ailewe TI, Erskine W (2015) Tolerance of three grain legume species to transient waterlogging. AoB Plants. Google Scholar
  31. Malmstrom CM, Butterfield HS, Planck L et al (2017) Novel fine-scale aerial mapping approach quantifies grassland weed cover dynamics and response to management. PLoS ONE 12:e0181665. CrossRefGoogle Scholar
  32. Meier CI, Reid BL, Sandoval O (2013) Effects of the invasive plant Lupinus polyphyllus on vertical accretion of fine sediment and nutrient availability in bars of the gravel-bed Paloma river. Limnol Ecol Manag Inland Waters 43:381–387. CrossRefGoogle Scholar
  33. Meunier G, Lavoie C (2012) Roads as corridors for invasive plant species: new evidence from smooth bedstraw (Galium mollugo). Invasive Plant Sci Manag 5:92–100. CrossRefGoogle Scholar
  34. Mooney HA, Hobbs RJ (eds) (2000) Invasive species in a changing world. Island Press, Washington, DCGoogle Scholar
  35. Morel-Journel T, Girod P, Mailleret L et al (2016) The highs and lows of dispersal: how connectivity and initial population size jointly shape establishment dynamics in discrete landscapes. Oikos 125:769–777. CrossRefGoogle Scholar
  36. Nehring S, Kowarik I, Rabitsch W, Essl F (eds) (2013) Naturschutzfachliche Invasivitätsbewertungen für in Deutschland wild lebende gebietsfremde Gefäßpflanzen [Invasiveness assessments for alien vascular plants living in the wild in Germany]. BfN Bundesamt für Naturschutz, BonnGoogle Scholar
  37. Otte A, Maul P (2005) Verbreitungsschwerpunkte und strukturelle Einnischung der Stauden-Lupine (Lupinus polyphyllus Lindl.) in Bergwiesen der Rhön. [Spatial distribution and structural niches of the invasive garden lupine (Lupinus polyphyphyllus Lindl.) in mountain meadows of the Rhön highlands]. Tuexenia 25:151–182Google Scholar
  38. Puffe D, Zerr W (1988) Untersuchungen an Böden unter Grünland in der hessischen Rhön und deren Vorland. [Studies on grassland soils in the Hessian Rhön] Eichhof-Berichte A/10 - Hessische landwirtschaftliche Lehr- und Forschungsanstalt Eichhof, Bad HersfeldGoogle Scholar
  39. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Accessed 23 Mar 2018
  40. Ramula S, Pihlaja K (2012) Plant communities and the reproductive success of native plants after the invasion of an ornamental herb. Biol Invasions 14:2079–2090. CrossRefGoogle Scholar
  41. Rehfuess KE, Makeschin F, Rodenkirchen H (1991) Results and experience from amelioration trials in Scots pine (Pinus sylvestris L.) forests of Northeastern Bavaria. Fertil Res 27:95–105CrossRefGoogle Scholar
  42. Rigot T, van Halder I, Jactel H (2014) Landscape diversity slows the spread of an invasive forest pest species. Ecography 37:648–658. CrossRefGoogle Scholar
  43. Rinella MJ, Maxwell BD, Fay PK et al (2009) Control effort exacerbates invasive-species problem. Ecol Appl 19:155–162. CrossRefGoogle Scholar
  44. Rodewald AD, Arcese P (2016) Direct and indirect interactions between landscape structure and invasive or overabundant species. Curr Landsc Ecol Rep 1:30–39. CrossRefGoogle Scholar
  45. Stohlgren TJ, Barnett DT, Jarnevich CS et al (2008) The myth of plant species saturation. Ecol Lett 11:313–322. CrossRefGoogle Scholar
  46. Thiele J, Schuckert U, Otte A (2008) Cultural landscapes of Germany are patch-corridor-matrix mosaics for an invasive megaforb. Landsc Ecol 23:453–465. CrossRefGoogle Scholar
  47. Thiele J, Isermann M, Otte A, Kollmann J (2010) Competitive displacement or biotic resistance? Disentangling relationships between community diversity and invasion success of tall herbs and shrubs. J Veg Sci 21:213–220. CrossRefGoogle Scholar
  48. Thomas SM, Moloney KA (2015) Combining the effects of surrounding land-use and propagule pressure to predict the distribution of an invasive plant. Biol Invasions 17:477–495. CrossRefGoogle Scholar
  49. Valtonen A, Jantunen J, Saarinen K (2006) Flora and lepidoptera fauna adversely affected by invasive Lupinus polyphyllus along road verges. Biol Conserv 133:389–396. CrossRefGoogle Scholar
  50. Vetter VMS, Tjaden NB, Jaeschke A et al (2018) Invasion of a legume ecosystem engineer in a cold biome alters plant biodiversity. Front Plant Sci 9:1. CrossRefGoogle Scholar
  51. Volz H (2003) Ursachen und Auswirkungen der Ausbreitung von Lupinus polyphyllus Lindl. im Bergwiesenökosystem der Rhön und Maßnahmen zu seiner Regulierung. [Causes and effects of the spread of Lupinus polyphyllus Lindl. in the mountain meadow ecosystem of the Rhön highlands and measures regulation measures.] Dissertation Justus Liebig University GiessenGoogle Scholar
  52. UNESCO MAB Man and Biosphere Reserves Directory (2007) Biosphere Reserve Information Germany—Rhön. 515 Accessed 19 July 2018
  53. Wegmann M, Leutner B, Dech S (eds) (2016) Remote sensing and GIS for ecologists: using open source software. Pelagic Publishing, ExeterGoogle Scholar
  54. Wickham H (2016) ggplot2: elegant graphics for data analysis, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  55. With KA (2002) The landscape ecology of invasive spread. Conserv Biol 16:1192–1203. CrossRefGoogle Scholar
  56. Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14. CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Division of Landscape Ecology and Landscape Planning, Research Centre for Biosystems, Land Use and Nutrition (iFZ)Justus Liebig University GiessenGiessenGermany
  2. 2.Department of Environmental and Life Sciences - BiologyKarlstad UniversityKarlstadSweden

Personalised recommendations