Skip to main content
Log in

Invasive plants decrease microbial capacity to nitrify and denitrify compared to native California grassland communities

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Exotic plant invasions are a major driver of global environmental change that can significantly alter the availability of limiting nutrients such as nitrogen (N). Beginning with European colonization of California, native grasslands were replaced almost entirely by annual exotic grasses, many of which are now so ubiquitous that they are considered part of the regional flora (“naturalized”). A new wave of invasive plants, such as Aegilops triuncialis (Barb goatgrass) and Elymus caput-medusae (Medusahead), continue to spread throughout the state today. To determine whether these new-wave invasive plants alter soil N dynamics, we measured inorganic N pools, nitrification and denitrification potentials, and possible mediating factors such as microbial biomass and soil pH in experimental grasslands comprised of A. triuncialis and E. caput-medusae. We compared these measurements with those from experimental grasslands containing: (1) native annuals and perennials and (2) naturalized exotic annuals. We found that A. triuncialis and E. caput-medusae significantly reduced ion-exchange resin estimates of nitrate (NO3 ) availability as well as nitrification and denitrification potentials compared to native communities. Active microbial biomass was also lower in invaded soils. In contrast, potential measurements of nitrification and denitrification were similar between invaded and naturalized communities. These results suggest that invasion by A. triuncialis and E. caput-medusae may significantly alter the capacity for soil microbial communities to nitrify or denitrify, and by extension alter soil N availability and rates of N transformations during invasion of remnant native-dominated sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arguez A, Durre I, Applequist S, Vose RS, Squires MF, Yin X, Heim RR, Owen TW (2012) NOAA’s 1981–2010 U.S. climate normals: an overview. Bull Am Meteorol Soc 93:1687–1697. doi:10.1175/BAMS-D-11-00197.1

    Article  Google Scholar 

  • Babiuk LA, Paul EA (1970) The use of fluorescein isothiocyanate in the determination of the bacterial biomass of grassland soil. Can J Microbiol 16:57–62. doi:10.1139/m70-011

    Article  CAS  PubMed  Google Scholar 

  • Batten KM, Scow KM, Davies KF, Harrison SP (2006) Two invasive plants alter soil microbial community composition in serpentine grasslands. Biol Invasions 8:217–230

    Article  Google Scholar 

  • Batten KM, Scow KM, Espeland EK (2008) Soil microbial community associated with an invasive grass differentially impacts native plant performance. Microb Ecol 55:220–228. doi:10.1007/s00248-007-9269-3

    Article  PubMed  Google Scholar 

  • Baty JH (2012) Changes to the seasonality of plant-soil systems by three phenologically distinct groups of California grassland plants. Thesis, University of California, Davis

    Google Scholar 

  • Belnap J, Phillips SL, Sherrod SK, Moldenke A (2005) Soil biota can change after exotic plant invasion: does this affect ecosystem processes? Ecology 86:3007–3017. doi:10.1890/05-0333

    Article  Google Scholar 

  • Binkley D (1984) Ion exchange resin bags: factors affecting estimates of nitrogen availability. Soil Sci Soc Am J 48:1181–1184. doi:10.2136/sssaj1984.03615995004800050046x

    Article  CAS  Google Scholar 

  • Binkley D, Hart SC (1989) The components of nitrogen availability assessments in forest soils. In: Stewart BA (ed) Advances in soil science. Springer, New York, pp 57–112

    Chapter  Google Scholar 

  • Binkley D, Matson P (1983) Ion exchange resin bag method for assessing forest soil nitrogen availability. Soil Sci Soc Am J 47:1050–1052. doi:10.2136/sssaj1983.03615995004700050045x

    Article  CAS  Google Scholar 

  • Bonham CD (2013) Measurements for terrestrial vegetation, 2nd edn. Wiley-Blackwell, Hoboken

    Book  Google Scholar 

  • Bossard CC, Randall JM, Hoshovsky MC (2000) Invasive plants of California’s wildlands. University of California Press, Berkeley

    Google Scholar 

  • Bovey RW, Le Tourneau D, Erickson LC (1961) The chemical composition of medusahead and downy brome. Weeds 9:307–311. doi:10.2307/4040420

    Article  Google Scholar 

  • Bratbak G, Dundas I (1984) Bacterial dry matter content and biomass estimation. Appl Environ Microbiol 48:755–757

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buckley DH, Schmidt TM (2001) The structure of microbial communities in soil and the lasting impact of cultivation. Microb Ecol 42:11–21. doi:10.1007/s002480000108

    CAS  PubMed  Google Scholar 

  • Bureau of Land Mangement (1996) Sampling vegetation attributes. Interagency Technical Reference

  • Canals RM, Eviner VT, Herman DJ, Iii FSC (2005) Plant colonizers shape early N-dynamics in gopher-mounds. Plant Soil 276:327–334. doi:10.1007/s11104-005-5086-y

    Article  CAS  Google Scholar 

  • Carey CJ, Beman JM, Eviner VT, Malmstrom CM, Hart SC (2015) Soil microbial community structure is unaltered by plant invasion, vegetation clipping, and nitrogen fertilization in experimental semi-arid grasslands. Front Microbiol 6:466. doi:10.3389/fmicb.2015.00466

    Article  PubMed  PubMed Central  Google Scholar 

  • Castro-Díez P, Godoy O, Alonso A, Gallardo A, Saldaña A (2014) What explains variation in the impacts of exotic plant invasions on the nitrogen cycle? a meta-analysis. Ecol Lett 17:1–12. doi:10.1111/ele.12197

    Article  PubMed  Google Scholar 

  • Clarholm M (1985) Interactions of bacteria, protozoa and plants leading to mineralization of soil nitrogen. Soil Biol Biochem 17:181–187

    Article  CAS  Google Scholar 

  • Corbin JD, D’antonio CM (2004) Effects of exotic species on soil nitrogen cycling: implications for restoration. Weed Technol 18:1464–1467. doi:10.1614/0890-037X(2004)018[1464:EOESOS]2.0.CO;2

    Article  CAS  Google Scholar 

  • Corbin JD, D’Antonio CM (2011a) Gone but not forgotten? Invasive plants’ legacies on community and ecosystem properties. Invasive Plant Sci Manag 5:117–124. doi:10.1614/IPSM-D-11-00005.1

    Article  Google Scholar 

  • Corbin JD, D’Antonio CM (2011b) Abundance and productivity mediate invader effects on nitrogen dynamics in a California grassland. Ecosphere 2:1–20. doi:10.1890/ES10-00113.1

    Article  Google Scholar 

  • D’Antonio C, Meyerson LA (2002) Exotic plant species as problems and solutions in ecological restoration: a synthesis. Restor Ecol 10:703–713. doi:10.1046/j.1526-100X.2002.01051.x

    Article  Google Scholar 

  • D’Antonio CM, Malmstrom C, Reynolds SA, Gerlach J (2007) Ecology of invasive non-native species in California grassland. In: Stromberg MR, Corbin JD, D’Antonio CM (eds) California grasslands: ecology and management. University of California Press, Berkeley, pp 67–83

    Google Scholar 

  • Darbyshire JF, Wheatly RE, Greaves MP, Inkson RHE (1974) A rapid micromethod for estimating bacterial and protozoan populations in soil. Rev Ecol Biol Sol 11:465–475

    Google Scholar 

  • Dassonville N, Guillaumaud N, Piola F, Meerts P, Poly F (2011) Niche construction by the invasive Asian knotweeds (species complex Fallopia): impact on activity, abundance and community structure of denitrifiers and nitrifiers. Biol Invasions 13:1115–1133. doi:10.1007/s10530-011-9954-5

    Article  Google Scholar 

  • Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88:528–534. doi:10.1046/j.1365-2745.2000.00473.x

    Article  Google Scholar 

  • Djigal D, Baudoin E, Philippot L, Brauman A, Villenave C (2010) Shifts in size, genetic structure and activity of the soil denitrifier community by nematode grazing. Eur J Soil Biol 46:112–118. doi:10.1016/j.ejsobi.2009.12.001

    Article  CAS  Google Scholar 

  • Drenovsky RE, Batten KM (2007) Invasion by Aegilops triuncialis (Barb Goatgrass) slows carbon and nutrient cycling in a serpentine grassland. Biol Invasions 9:107–116. doi:10.1007/s10530-006-0007-4

    Article  Google Scholar 

  • Duncan CA, Jachetta JJ, Brown ML, Carrithers VF, Clark JK, DiTomaso JM, Lym RG, McDaniel KC, Renz MJ, Rice PM (2004) Assessing the economic, environmental, and societal losses from invasive plants on rangeland and wildlands. Weed Technol 18:1411–1416. doi:10.1614/0890-037X(2004)018[1411:ATEEAS]2.0.CO;2

    Article  Google Scholar 

  • Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6:503–523. doi:10.1007/s10021-002-0151-3

    Article  CAS  Google Scholar 

  • Eviner VT (2004) Plant traits that influence ecosystem processes vary independently among species. Ecology 85:2215–2229. doi:10.1890/03-0405

    Article  Google Scholar 

  • Eviner VT (2016) Grasslands. In: Mooney HA, Zavaleta E (eds) Ecosystems of California. University of California Press, Berkeley, pp 449–477

    Google Scholar 

  • Eviner VT, Chapin FS III (2003) Functional matrix: a conceptual framework for predicting multiple plant effects on ecosystem processes. Annu Rev Ecol Evol Syst 34:455–485. doi:10.1146/annurev.ecolsys.34.011802.132342

    Article  Google Scholar 

  • Eviner VT, Firestone MK (2007) Mechanisms determining patterns of nutrient dynamics. In: Stromberg MR, Corbin JD, D’Antonio CM (eds) California grasslands: ecology and management. University of California Press, Berkeley, pp 94–106

    Google Scholar 

  • Eviner VT, Stuart Chapin I F, Vaughn CE (2006) Seasonal variations in plant species effects on soil N and P dynamics. Ecology 87:974–986. doi:10.1890/0012-9658(2006)87[974:SVIPSE]2.0.CO;2

    Article  PubMed  Google Scholar 

  • Eviner VT, Hoskinson SA, Hawkes CV (2010) Ecosystem impacts of exotic plants can feed back to increase invasion in Western US rangelands. Rangelands 32:21–31. doi:10.2111/RANGELANDS-D-09-00005.1

    Article  Google Scholar 

  • Gaertner M, Biggs R, Te Beest M, Hui C, Molofsky J, Richardson DM (2014) Invasive plants as drivers of regime shifts: identifying high-priority invaders that alter feedback relationships. Divers Distrib 20:733–744. doi:10.1111/ddi.12182

    Article  Google Scholar 

  • Gornish ES, Fierer N, Barberán A (2016) Associations between an invasive plant (Taeniatherum caput-medusae, Medusahead) and soil microbial communities. PLoS ONE 11:e0163930. doi:10.1371/journal.pone.0163930

    Article  PubMed  PubMed Central  Google Scholar 

  • Griffiths BS (1989) Enhanced nitrification in the presence of bacteriophagous protozoa. Soil Biol Biochem 21:1045–1051. doi:10.1016/0038-0717(89)90042-4

    Article  CAS  Google Scholar 

  • Grman E, Suding KN (2010) Within-year soil legacies contribute to strong priority effects of exotics on native California grassland communities. Restor Ecol 18:664–670. doi:10.1111/j.1526-100X.2008.00497.x

    Article  Google Scholar 

  • Hart SC, Stark JM, Davidson EA, Firestone MK (1994) Nitrogen mineralization, immobilization, and nitrification. In: Bottomley PS, Angle JS, Weaver RW (eds) Methods of soil analysis: part 2—microbiological and biochemical properties. SSSA, Madison, pp 985–1018. doi:10.2136/sssabookser5.2.c42

    Google Scholar 

  • Hawkes CV, Wren IF, Herman DJ, Firestone MK (2005) Plant invasion alters nitrogen cycling by modifying the soil nitrifying community. Ecol Lett 8:976–985. doi:10.1111/j.1461-0248.2005.00802.x

    Article  Google Scholar 

  • Hobbs RJ, Mooney HA (1995) Spatial and temporal variability in California annual grassland: results from a long-term study. J Veg Sci 6:43–56. doi:10.2307/3236255

    Article  Google Scholar 

  • Hobbs RJ, Yates S, Mooney HA (2007) Long-term data reveal complex dynamics in grassland in relation to climate and disturbance. Ecol Monogr 77:545–568. doi:10.1890/06-1530.1

    Article  Google Scholar 

  • Holmes TH, Rice KJ (1996) Patterns of growth and soil–water utilization in some exotic annuals and native perennial bunchgrasses of California. Ann Bot 78:233–243. doi:10.1006/anbo.1996.0117

    Article  Google Scholar 

  • Jacobsen WC (1929) Goatgrass—a weed pest of the range. Mon Bull Dept Agric State Calif 18:37–41

    Google Scholar 

  • Kaneko N, Salamanca E (1999) Mixed leaf litter effects on decomposition rates and soil microarthropod communities in an oak–pine stand in Japan. Ecol Res 14:131–138. doi:10.1046/j.1440-1703.1999.00292.x

    Article  Google Scholar 

  • Knops JMH, Bradley KL, Wedin DA (2002) Mechanisms of plant species impacts on ecosystem nitrogen cycling. Ecol Lett 5:454–466. doi:10.1046/j.1461-0248.2002.00332.x

    Article  Google Scholar 

  • Kulmatiski A (2006) Exotic plants establish persistent communities. Plant Ecol 187:261–275. doi:10.1007/s11258-006-9140-5

    Article  Google Scholar 

  • Kulmatiski A, Beard KH, Stark JM (2006) Soil history as a primary control on plant invasion in abandoned agricultural fields. J Appl Ecol 43:868–876. doi:10.1111/j.1365-2664.2006.01192.x

    Article  Google Scholar 

  • Kumschick S, Gaertner M, Vilà M, essl F, Jeschke JM, Pyšek P, Ricciardi A, Bacher S, Blackburn TM, Dick JT, Evans T (2015) Ecological impacts of alien species: quantification, scope, caveats, and recommendations. Bioscience 65:55–63. doi:10.1093/biosci/biu193

    Article  Google Scholar 

  • Lajtha K (1988) The use of ion-exchange resin bags for measuring nutrient availability in an arid ecosystem. Plant Soil 105:105–111. doi:10.1007/BF02371147

    Article  CAS  Google Scholar 

  • LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379. doi:10.1890/06-2057.1

    Article  PubMed  Google Scholar 

  • Liao C, Peng R, Luo Y et al (2008) Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phytol 177:706–714. doi:10.1111/j.1469-8137.2007.02290.x

    Article  CAS  PubMed  Google Scholar 

  • Lodge DJ, Ingham ER (1991) A comparison of agar film techniques for estimating fungal biovolumes in litter and soil. Agric Ecosyst Environ 34:131–144. doi:10.1016/0167-8809(91)90101-3

    Article  Google Scholar 

  • Mack MC, D’Antonio CM (1998) Impacts of biological invasions on disturbance regimes. Trends Ecol Evol 13:195–198. doi:10.1016/S0169-5347(97)01286-X

    Article  CAS  PubMed  Google Scholar 

  • Mack RN, Simberloff D, Mark Lonsdale W, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710. doi:10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2

    Article  Google Scholar 

  • Manzoni S, Jackson RB, Trofymow JA, Porporato A (2008) The global stoichiometry of litter nitrogen mineralization. Science 321:684–686. doi:10.1126/science.1159792

    Article  CAS  PubMed  Google Scholar 

  • McLeod ML, Cleveland CC, Lekberg Y, Philippot L, Bru D, Callaway RM (2016) Exotic invasive plants increase productivity, abundance of ammonia-oxidizing bacteria and nitrogen availability in intermountain grasslands. J Ecol 104:994–1002. doi:10.1111/1365-2745.12584

    Article  CAS  Google Scholar 

  • Meisner A, Hol WHG, de Boer W, Krumins JA, Wardle DA, van der Putten WH (2014) Plant–soil feedbacks of exotic plant species across life forms: a meta-analysis. Biol Invasions 16:2551–2561. doi:10.1007/s10530-014-0685-2

    Article  Google Scholar 

  • Mielke PW, Berry KJ, Brier GW (1981) Application of multi-response permutation procedures for examining seasonal changes in monthly mean sea-level pressure patterns. Mon Weather Rev 109:120–126. doi:10.1175/1520-0493(1981)109<0120:AOMRPP>2.0.CO;2

    Article  Google Scholar 

  • Nafus AM, Davies KW (2014) Medusahead ecology and management: California annual grasslands to the intermountain west. Invasive Plant Sci Manag 7:210–221. doi:10.1614/IPSM-D-13-00077.1

    Article  Google Scholar 

  • Oksanen J, Blanchet G, Kindt R, Legendre P, Minchin PR, O'hara RB, Simpson GL, Solymos P, Stevens MH, Wagner H (2016) vegan: community ecology package. R package version 2.3-3

  • Ouyang Y, Norton JM, Stark JM, Reeve JR, Habteselassie MY (2016) Ammonia-oxidizing bacteria are more responsive than archaea to nitrogen source in an agricultural soil. Soil Biol Biochem 96:4–15. doi:10.1016/j.soilbio.2016.01.012

    Article  CAS  Google Scholar 

  • Parton W, Silver WL, Burke IC, Grassens L, Harmon ME, Currie WS, King JY, Adair EC, Brandt LA, Hart SC, Fasth B (2007) Global-scale similarities in nitrogen release patterns during long-term decomposition. Science 315:361–364. doi:10.1126/science/1134853

    Article  CAS  PubMed  Google Scholar 

  • Paul EA, Harris D, Klug MJ (1999) The determination of microbial biomass. In: Robertson GP, Coleman DC, Bledsoe CS, Sollins P (eds) Standard soil methods for long-term ecological research. Oxford University Press, New York, pp 291–317

    Google Scholar 

  • Perkins LB, Nowak RS (2013) Native and non-native grasses generate common types of plant–soil feedbacks by altering soil nutrients and microbial communities. Oikos 122:199–208. doi:10.1111/j.1600-0706.2012.20592.x

    Article  Google Scholar 

  • Perkins LB, Johnson DW, Nowak RS (2011) Plant-induced changes in soil nutrient dynamics by native and invasive grass species. Plant Soil 345:365–374. doi:10.1007/s11104-011-0788-9

    Article  CAS  Google Scholar 

  • Perkins LB, Hatfield G, Espeland EK (2015) Invasive grasses consistently create similar plant–soil feedback types in soils collected from geographically distant locations. J Plant Ecol. doi:10.1093/jpe/rtv040

    Google Scholar 

  • Peters A, Johnson DE, George MR (1996) Barb goatgrass: a threat to California rangelands. Rangelands 18:8–10

    Google Scholar 

  • Piper CL, Lamb EG, Siciliano SD (2015) Smooth brome changes gross soil nitrogen cycling processes during invasion of a rough fescue grassland. Plant Ecol 216:235–246. doi:10.1007/s11258-014-0431-y

    Article  Google Scholar 

  • Qian P, Schoenau JJ (2002) Practical applications of ion exchange resins in agricultural and environmental soil research. Can J Soil Sci 82:9–21

    Article  CAS  Google Scholar 

  • R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/

  • Richardson DM, Pyšek P (2008) Fifty years of invasion ecology—the legacy of Charles Elton. Divers Distrib 14:161–168. doi:10.1111/j.1472-4642.2007.00464.x

    Article  Google Scholar 

  • Sena MM, Frighetto RTS, Valarini PJ et al (2002) Discrimination of management effects on soil parameters by using principal component analysis: a multivariate analysis case study. Soil Tillage Res 67:171–181. doi:10.1016/S0167-1987(02)00063-6

    Article  Google Scholar 

  • Smith MS, Tiedge JM (1979) Phases of denitrification following oxygen depletion in soil. Soil Biol Biochem 111:261–267. doi:10.1016/0038-0717(79)90071-3

    Article  Google Scholar 

  • Stefanowicz AM, Stanek M, Nobis M, Zubek S (2016) Species-specific effects of plant invasions on activity, biomass, and composition of soil microbial communities. Biol Fertil Soils 52:841–852. doi:10.1007/s00374-016-1122-8

    Article  CAS  Google Scholar 

  • Strayer DL, Eviner VT, Jeschke JM, Pace ML (2006) Understanding the long-term effects of species invasions. Trends Ecol Evol 21:645–651. doi:10.1016/j.tree.2006.07.007

    Article  PubMed  Google Scholar 

  • Street JR (1974) The influence of silica concentration on the chemical composition and decomposition rates of turfgrass tissue and water absorption rates among three turfgrass species. Dissertation, The Ohio State University

  • Stromberg MR, D’Antonio CM, Young TP, Wirka J, Kephart PR (2007) California grassland restoration. In: Stromberg MR, Corbin JD, D’Antonio CM (eds) California grasslands: ecology and management. University of California Press, Berkeley, pp 254–281

    Google Scholar 

  • Suding KN, Gross KL, Houseman GR (2004a) Alternative states and positive feedbacks in restoration ecology. Trends Ecol Evol 19:46–53. doi:10.1016/j.tree.2003.10.005

    Article  PubMed  Google Scholar 

  • Suding KN, LeJeune KD, Seastedt TR (2004b) Competitive impacts and responses of an invasive weed: dependencies on nitrogen and phosphorus availability. Oecologia 141:526–535. doi:10.1007/s00442-004-1678-0

    Article  PubMed  Google Scholar 

  • Swenson CF, Le Tourneau D, Erickson LC (1964) Silica in medusahead. Weeds 12:16–18. doi:10.2307/4040629

    Article  CAS  Google Scholar 

  • Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11:1351–1363. doi:10.1111/j.1461-0248.2008.01250.x

    Article  PubMed  Google Scholar 

  • Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13:87–115. doi:10.1007/BF00002772

    Article  Google Scholar 

  • Vitousek PM, D’Antonio CM, Loope LL, Rejmanek M, Westbrooks R (1997) Introduced species: a significant component of human-caused global change. N Z J Ecol 21:1–16

    Google Scholar 

  • Wardle DA, Ghani A (1995) Why is the strength of relationships between pairs of methods for estimating microbial biomass often so variable? Soil Biol Biochem 27:821–828. doi:10.1016/0038-0717(94)00229-T

    Article  CAS  Google Scholar 

  • West AW, Sparling GP (1986) Modifications to the substrate-induced respiration method to permit measurement of microbial biomass in soils of differing water contents. J Microbiol Methods 5:177–189. doi:10.1016/0167-7012(86)90012-6

    Article  CAS  Google Scholar 

  • Yelenik SG, D’Antonio CM (2013) Self-reinforcing impacts of plant invasions change over time. Nature 503:517–520. doi:10.1038/nature12798

    Article  CAS  PubMed  Google Scholar 

  • Young K, Mangold J (2008) Medusahead (Taeniatherum caput-medusae) outperforms squirreltail (Elymus elymoides) through interference and growth rate. Invasive Plant Sci Manag 1:73–81. doi:10.1614/IPSM-07-021.1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Jill Baty, Abby Dziegel, Grant Iveson-Lane, Emma McCorkle, Nicholas Marlowe, and Erin Stacy for their help in sample collection and preparation. The experimental design and setup was greatly facilitated with technical and labor support from the UC Davis Department of Plant Sciences Field Services, led by James Jackson. Funding for the experimental design and setup was provided by the USDA NIFA NRI Controlling Weedy and Invasive Plants Program (Grant No. 2006-55320-17247), Kearney Foundation of Soil Science, Hatch Funding, and Packard Foundation funding to the UC Agriculture Sustainability Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chelsea J. Carey.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 807 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carey, C.J., Blankinship, J.C., Eviner, V.T. et al. Invasive plants decrease microbial capacity to nitrify and denitrify compared to native California grassland communities. Biol Invasions 19, 2941–2957 (2017). https://doi.org/10.1007/s10530-017-1497-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-017-1497-y

Keywords

Navigation