Biological Invasions

, Volume 19, Issue 4, pp 1255–1271 | Cite as

High adaptive variability and virus-driven selection on major histocompatibility complex (MHC) genes in invasive wild rabbits in Australia

  • Nina Schwensow
  • Camila J. Mazzoni
  • Elena Marmesat
  • Joerns Fickel
  • David Peacock
  • John Kovaliski
  • Ron Sinclair
  • Phillip Cassey
  • Brian Cooke
  • Simone Sommer
Original Paper

Abstract

The rabbit haemorrhagic disease virus (RHDV) was imported into Australia in 1995 as a biocontrol agent to manage one of the most successful and devastating invasive species, the European rabbit (Oryctolagus cuniculus cuniculus). During the first disease outbreaks, RHDV caused mortality rates of up to 97% and reduced Australian rabbit numbers to very low levels. However, recently increased genetic resistance to RHDV and strong population growth has been reported. Major histocompatibility complex (MHC) class I immune genes are important for immune responses against viruses, and a high MHC variability is thought to be crucial in adaptive processes under pathogen-driven selection. We asked whether strong population bottlenecks and presumed genetic drift would have led to low MHC variability in wild Australian rabbits, and if the retained MHC variability was enough to explain the increased resistance against RHD. Despite the past bottlenecks we found a relatively high number of MHC class I sequences distributed over 2–4 loci. We identified positive selection on putative antigen-binding sites of the MHC. We detected evidence for RHDV-driven selection as one MHC supertype was negatively associated with RHD survival, fitting expectations of frequency-dependent selection. Gene duplication and pathogen-driven selection are possible (and likely) mechanisms that maintained the adaptive potential of MHC genes in Australian rabbits. Our findings not only contribute to a better understanding of the evolution of invasive species, they are also important in the light of planned future rabbit biocontrol in Australia.

Keywords

Major histocompatibility complex (MHC) Australian rabbit invasion Rabbit haemorrhagic disease virus (RHDV) Virus-driven selection Adaptive genetic variability 

Supplementary material

10530_2016_1329_MOESM1_ESM.docx (15 kb)
Supplemental Fig. 1Nucleotide and amino acid alignment. Sequence alignment of MHC I alleles from wild rabbits from the Turretfield population/Australia. The sequence corresponds to the amino acid positions 104-168 of the α2 domain of the human MHC I sequence. Asterisks indicate putative human ABS (Bjorkman and Parham 1990; Bjorkman et al. 1987), ‘x’ indicates the positions where evidence for positive selection on the rabbit MHC alleles was identified using the indicated statistical approaches. Dots indicate identity to the top sequence. The nucleotide sequences of MHC class I-Orcu*01a, MHC class I-Orcu*01b and MHC class I-Orcu*01c translated into the same amino acid sequence. a see Table 1 for statistics, bcodons with significance level > 0.1, ccodons with Bayes factor > 50, dcodons with posterior probability ≥ 0.9. (DOCX 14 kb)
10530_2016_1329_MOESM2_ESM.docx (17 kb)
Supplementary material 2 (DOCX 16 kb)
10530_2016_1329_MOESM3_ESM.xlsx (11 kb)
Supplementary material 3 (XLSX 11 kb)

References

  1. Aguilar A, Roemer G, Debenham S et al (2004) High MHC diversity mainteined by balancing selection in an otherwise genetically monomorphic mammal. PNAS 101:3490–3494CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alcaide M (2010) On the relative roles of selection and genetic drift in shaping MHC variation. Mol Ecol 19:3842–3844CrossRefPubMedGoogle Scholar
  3. Alföldi J, Palma FD, Lindblad-Toh K (2009) The European rabbit genome. In: Houdebine L-M, Fan J (eds) Rabbit biotechnology. Springer, Netherlands, Dordrecht, p 129CrossRefGoogle Scholar
  4. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedGoogle Scholar
  5. Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc
  6. Aronesty E (2011) Command-line tools for processing biological sequencing data. http://code.google.com/p/ea-utils
  7. Babik W, Durka W, Radwan J (2005) Sequence diversity of the MHC DRB gene in the Eurasian beaver (Castor fiber). Mol Ecol 14:4249–4257CrossRefPubMedGoogle Scholar
  8. Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48CrossRefPubMedGoogle Scholar
  9. Barton K (2015) MuMIn: multi-model inference. R package version 1.14.0. http://CRAN.R-project.org/package=MuMIn
  10. Bjorkman P, Parham P (1990) Structure, function, and diversity of class I Major Histocompatibility Complex molecules. Annu Rev Biochem 59:253–288CrossRefPubMedGoogle Scholar
  11. Bjorkman PJ, Saper MA, Samraoui B et al (1987) The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature 329:512–518CrossRefPubMedGoogle Scholar
  12. Blackburn TM, Lockwood JL, Cassey P (2015) The influence of numbers on invasion success. Mol Ecol 24:1942–1953CrossRefPubMedGoogle Scholar
  13. Burdon JJ, Thrall PH, Ericson L (2013) Genes, communities & invasive species: understanding the ecological and evolutionary dynamics of host–pathogen interactions. Curr Opin Plant Biol 16:400–405CrossRefPubMedGoogle Scholar
  14. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New YorkGoogle Scholar
  15. Capucci L, Scicluna M, Lavazza A (1991) Diagnosis of viral haemorrhagic disease of rabbits and the European brown hare syndrome. Rev Sci Tech 10:347–370PubMedGoogle Scholar
  16. Capucci L, Nardin A, Lavazza A (1997) Seroconversion in an industrial unit of rabbits infected with a non-pathogenic rabbit haemorrhagic disease-like virus. Vet Res 140:647–650Google Scholar
  17. Carneiro M, Rubin C-J, Di Palma F et al (2014) Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. Science 345:1074–1079CrossRefPubMedGoogle Scholar
  18. Castro-Prieto A, Wachter B, Sommer S (2011) Cheetah paradigm revisited: MHC diversity in the world's largest free-ranging population. Mol Biol Evol 28:1455–1468Google Scholar
  19. Castro-Prieto A, Wachter B, Melzheimer J et al (2012) Immunogenetic variation and differential pathogen exposure in free-ranging cheetahs across namibian farmlands. PLoS ONE 7:e49129CrossRefPubMedPubMedCentralGoogle Scholar
  20. Cheng Y, Sanderson C, Jones M, Belov K (2012) Low MHC class II diversity in the Tasmanian devil (Sarcophilus harrisii). Immunogenetics 64:525–533CrossRefPubMedGoogle Scholar
  21. Claire L, Murielle R, Stéphane G et al (2009) Diversifying selection on MHC class I in the house sparrow (Passer domesticus). Mol Ecol 18:1331–1340CrossRefGoogle Scholar
  22. Coltman DW, Pilkington JG, Smith JA, Pemberton JM (1999) Parasite-mediated selection against inbred Soay sheep in a free-living, island population. Evolution 53:1259–1267CrossRefGoogle Scholar
  23. Cooke BD (2012) Rabbits: manageable environmental pests or participants in new Australian ecosystems? Wildl Res 39:279–289CrossRefGoogle Scholar
  24. Cooke BD (2014) Australia’s war against rabbit. The story of rabbit haemorrhagic disease. CSIRO Publishing, CanberraGoogle Scholar
  25. Cooke BD, Berman D (2000) Effect of inoculation route and ambient temperature on the survival time of rabbits, Oryctolagus cuniculus (L.), infected with rabbit haemorrhagic disease virus. Wildl Res 27:137–142CrossRefGoogle Scholar
  26. Cooke BD, Robinson AJ, Merchant JC, Nardin A, Capucci L (2000) Use of ELISAs in field studies of rabbit haemorrhagic disease (RHD) in Australia. Epidemiol Infect 124:563–576CrossRefPubMedPubMedCentralGoogle Scholar
  27. Cooke B, Chudleigh P, Simpson S, Saunders G (2013) The economic benefits of the biological control of rabbits in Australia, 1950–2011. Aust Econ Hist Rev 53:91–107CrossRefGoogle Scholar
  28. Delport W, Poon AFY, Frost SDW, Kosakovsky Pond SL (2010) Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics 26:2455–2457CrossRefPubMedPubMedCentralGoogle Scholar
  29. Dlugosch KM, Anderson SR, Braasch J, Cang FA, Gillette HD (2015) The devil is in the details: genetic variation in introduced populations and its contributions to invasion. Mol Ecol 24:2095–2111CrossRefPubMedGoogle Scholar
  30. Dodt M, Roehr J, Ahmed R, Dieterich C (2012) FLEXBAR—flexible barcode and adapter processing for next-generation sequencing platforms. Biology 1:895CrossRefPubMedPubMedCentralGoogle Scholar
  31. Doherty PC, Zinkernagel RM (1975) Enhanced immunological surveillance in mice heterozygous at the H-2 gene complex. Nature 256:50–52CrossRefPubMedGoogle Scholar
  32. Doytchinova IA, Flower DR (2005) In silico identification of supertypes for class II MHCs. J Immunol 174:7085–7095CrossRefPubMedGoogle Scholar
  33. Eden J-S, Read AJ, Duckworth JA, Strive T, Holmes EC (2015) Resolving the origin of rabbit haemorrhagic disease virus (RHDV): insights from an investigation of the viral stocks released in Australia. J Virol. doi:10.1128/JVI.01100-15
  34. Ejsmond M, Radwan J (2011) MHC diversity in bottlenecked populations: a simulation model. Conserv Genet 12:129–137CrossRefGoogle Scholar
  35. Ejsmond MJ, Radwan J (2015) Red queen processes drive positive selection on Major Histocompatibility Complex (MHC) genes. PLoS Comput Biol 11:e1004627CrossRefPubMedPubMedCentralGoogle Scholar
  36. Ellegren H, Hartman G, Johansson M, Andersson L (1993) Major histocompatibility complex monomorphism and low levels of DNA fingerprinting variability in a reintroduced and rapidly expanding population of beavers. Proc Natl Acad Sci 90:8150–8153CrossRefPubMedPubMedCentralGoogle Scholar
  37. Elsworth PG, Kovaliski J, Cooke BD (2012) Rabbit haemorrhagic disease: are Australian rabbits (Oryctolagus cuniculus) evolving resistance to infection with Czech CAPM 351 RHDV? Epidemiol Infect 140:1972–1981CrossRefPubMedGoogle Scholar
  38. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567CrossRefPubMedGoogle Scholar
  39. Fontanesi L, Martelli PL, Scotti E et al (2012) Exploring copy number variation in the rabbit (Oryctolagus cuniculus) genome by array comparative genome hybridization. Genomics 100:245–251CrossRefPubMedGoogle Scholar
  40. Hambuch T, Lacey EA (2002) Enhanced selection for MHC diversity in social tuco-tucos. Evolution 56:841–845CrossRefPubMedGoogle Scholar
  41. Hughes AL, Nei M (1988) Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 335:167–170CrossRefPubMedGoogle Scholar
  42. Kerr PJ (2012) Myxomatosis in Australia and Europe: a model for emerging infectious diseases. Antiviral Res 93:387–415CrossRefPubMedGoogle Scholar
  43. Klein J (1986) Natural history of the major histocompatibility complex. Wiley, New YorkGoogle Scholar
  44. Klein J, Bontrop RE, Dawkins RL et al (1993) Nomenclature for the major histocompatibility complexes of different species: a proposal. In: Solheim BG, Ferrone S, Möller E (eds) The HLA system in clinical transplantation: basic concepts and importance. Springer, Berlin, pp 407–411CrossRefGoogle Scholar
  45. Klein J, Sato A, Nagl S, O’HUigÃn C (1998) Molecular trans-species polymorphism. Annu Rev Ecol Syst 29:1–21CrossRefGoogle Scholar
  46. Kondrashov FA (2012) Gene duplication as a mechanism of genomic adaptation to a changing environment. Proc R Soc Lond B Biol Sci 279:5048–5057CrossRefGoogle Scholar
  47. Kondrashov F, Rogozin I, Wolf Y, Koonin E (2002) Selection in the evolution of gene duplications. Genome Biol 3:1–9CrossRefGoogle Scholar
  48. Korstanje R, Gillissen GF, Versteeg SA et al (2003) Mapping of rabbit microsatellite markers using chromosome-specific libraries. J Hered 94:161–169CrossRefPubMedGoogle Scholar
  49. Kosakovsky Pond SL, Frost SDW (2005) not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 22:1208–1222CrossRefPubMedGoogle Scholar
  50. Kosakovsky Pond SL, Posada D, Gravenor MB, Woelk CH, Frost SDW (2006) Automated phylogenetic detection of recombination using a genetic algorithm. Mol Biol Evol 23:1891–1901CrossRefPubMedGoogle Scholar
  51. Kovaliski J, Sinclair R, Mutze G et al (2013) Molecular epidemiology of rabbit haemorrhagic disease virus in Australia: when one became many. Mol Ecol 23:408–420CrossRefPubMedPubMedCentralGoogle Scholar
  52. Kubinak JL, Ruff JS, Cornwall DH et al (2013) Experimental viral evolution reveals major histocompatibility complex polymorphisms as the primary host factors controlling pathogen adaptation and virulence. Genes Immun 14:365–372CrossRefPubMedPubMedCentralGoogle Scholar
  53. Lawson Handley L-J, Estoup A, Evans DM et al (2011) Ecological genetics of invasive alien species. Biocontrol 56:409–428CrossRefGoogle Scholar
  54. Lemos de Matos A, McFadden G, Esteves PJ (2014) Evolution of viral sensing RIG-I-like receptor genes in Leporidae genera Oryctolagus, Sylvilagus, and Lepus. Immunogenetics 66:43–52CrossRefPubMedGoogle Scholar
  55. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452CrossRefPubMedGoogle Scholar
  56. Lillie M, Grueber C, Sutton J et al (2015) Selection on MHC class II supertypes in the New Zealand endemic Hochstetter’s frog. BMC Evol Biol 15:63CrossRefPubMedPubMedCentralGoogle Scholar
  57. Lin ML, Zhan Y, Proietto AI et al (2008) Selective suicide of cross-presenting CD8 + dendritic cells by cytochrome c injection shows functional heterogeneity within this subset. Proc Natl Acad Sci 105:3029–3034CrossRefPubMedPubMedCentralGoogle Scholar
  58. Loiseau C, Zoorob R, Garnier S et al (2008) Antagonistic effects of a Mhc class I allele on malaria-infected house sparrows. Ecol Lett 11:258–265CrossRefPubMedGoogle Scholar
  59. Magalhães V, Abrantes J, Munõz-Pajares AJ, Esteves PJ (2015) Genetic diversity comparison of the DQA gene in European rabbit (Oryctolagus cuniculus) populations. Immunogenetics 67:579–590CrossRefPubMedGoogle Scholar
  60. Martin DP, Murrell B, Golden M, Khoosal A, Muhire B (2015) RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol. doi:10.1093/ve/vev003 Google Scholar
  61. Mazerolle MJ (2016) AICcmodavg: model selection and multimodel inference based on (Q)AIC(c). R package version 2.0-4. http://CRAN.R-project.org/package=MuMIn
  62. Miller C, Joyce P, Waits L (2002) Assessing allelic dropout and genotype reliability using maximum likelihood. Genetics 160:357–366PubMedPubMedCentralGoogle Scholar
  63. Mougel F, Mounolou J-C, Monnerot M (1997) Nine polymorphic microsatellite loci in the rabbit, Oryctolagus cuniculus. Anim Genet 28:58–71CrossRefPubMedGoogle Scholar
  64. Murrell B, Wertheim JO, Moola S et al (2012) Detecting individual sites subject to episodic diversifying selection. PLoS Genet 8:e1002764CrossRefPubMedPubMedCentralGoogle Scholar
  65. Murrell B, Moola S, Mabona A et al (2013) FUBAR: a fast, unconstrained Bayesian approximation for inferring selection. Mol Biol Evol 30:1196–1205CrossRefPubMedPubMedCentralGoogle Scholar
  66. Mutze G, Cooke B, Alexander P (1998) The initial impact of rabbit hemorrhagic disease on European rabbit populations in South Australia. J Wildl Dis 34:221–227CrossRefPubMedGoogle Scholar
  67. Mutze G, Bird P, Jennings S et al (2015) Recovery of South Australian rabbit populations from the impact of rabbit haemorrhagic disease. Wildl Res 41:552–559CrossRefGoogle Scholar
  68. Oppelt C, Starkloff A, Rausch P, Von Holst D, Rödel HG (2010) Major histocompatibility complex variation and age-specific endoparasite load in subadult European rabbits. Mol Ecol 19:4155–4167CrossRefPubMedGoogle Scholar
  69. Otting N, Heijmans CMC, Noort RC et al (2005) Unparalleled complexity of the MHC class I region in rhesus macaques. Proc Natl Acad Sci USA 102:1626–1631CrossRefPubMedPubMedCentralGoogle Scholar
  70. Peacock D, Abbott I (2013) The role of quoll (Dasyurus) predation in the outcome of pre-1900 introductions of rabbits (Oryctolagus cuniculus) to the mainland and islands of Australia. Aust J Zool 61:206–280CrossRefGoogle Scholar
  71. Peacock D, Sinclair R (2009) Longevity record for a wild European rabbit, Oryctolagus cuniculus, from South Australia. Aust Mammal 31:65–66CrossRefGoogle Scholar
  72. Piertney SB, Oliver MK (2006) The evolutionary ecology of the major histocompatibility complex. Heredity 96:7–21PubMedGoogle Scholar
  73. Pinheiro A, Woof JM, Almeida T et al (2014) Leporid immunoglobulin G shows evidence of strong selective pressure on the hinge and CH3 domains. Open Biol. doi:10.1098/rsob.140088 PubMedPubMedCentralGoogle Scholar
  74. Pond SLK, Frost SDW, Muse SV (2005) HyPhy: hypothesis testing using phylogenies. Bioinformatics 21:676–679CrossRefPubMedGoogle Scholar
  75. Queney G, Ferrand N, Marchandeau S et al (2000) Absence of a genetic bottleneck in a wild rabbit (Oryctolagus cuniculus) population exposed to a severe viral epizootic. Mol Ecol 9:1253–1264CrossRefPubMedGoogle Scholar
  76. Radwan J, Biedrzycka A, Babik W (2010) Does reduced MHC diversity decrease viability of vertebrate populations? Biol Conserv 143:537–544CrossRefGoogle Scholar
  77. Reche PA, Reinherz EL (2003) Sequence variability analysis of human class I and class II MHC molecules: functional and structural correlates of amino acid polymorphisms. J Mol Biol 331:623–641CrossRefPubMedGoogle Scholar
  78. Roos C, Walter L (2004) Considerable haplotypic diversity in the RT1-CE class I gene region of the rat major histocompatibility complex. Immunogenetics 56:773–777CrossRefPubMedGoogle Scholar
  79. R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing., Vienna, Austria. http://www.R-project.org/
  80. Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbour Laboratory Press, New YorkGoogle Scholar
  81. Sandberg M, Eriksson L, Jonsson J, Sjöström M, Wold S (1998) New chemical descriptors relevant for the design of biologically active peptides. A multivariate characterization of 87 amino acids. J Med Chem 41:2481–2491CrossRefPubMedGoogle Scholar
  82. Saunders G, Cooke B, McColl K, Shine R, Peacock T (2010) Modern approaches for the biological control of vertebrate pests: an Australian perspective. Biol Control 52:288–295CrossRefGoogle Scholar
  83. Schwensow N, Fietz J, Dausmann K, Sommer S (2007) Neutral versus adaptive variation in parasite resistance: importance of MHC-supertypes in a free-ranging primate. Heredity 99:265–277CrossRefPubMedGoogle Scholar
  84. Schwensow NI, Cooke B, Kovaliski J et al (2014) Rabbit haemorrhagic disease: virus persistence and adaptation in Australia. Evol Appl 7:1056–1067CrossRefPubMedPubMedCentralGoogle Scholar
  85. Sepil I, Lachish S, Sheldon BC (2013) Mhc-linked survival and lifetime reproductive success in a wild population of great tits. Mol Ecol 22:384–396CrossRefPubMedGoogle Scholar
  86. Sommer S (2005a) The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Front Zool. doi:10.1186/1742-9994-1182-1116 PubMedPubMedCentralGoogle Scholar
  87. Sommer S (2005b) Major histocompatibility complex and mate choice in a monogamous rodent. Behav Ecol Sociobiol 58:181–189CrossRefGoogle Scholar
  88. Sommer S, Courtiol A, Mazzoni C (2013) MHC genotyping of non-model organisms using next-generation sequencing: a new methodology to deal with artefacts and allelic dropout. BMC Genom 14:542CrossRefGoogle Scholar
  89. Spurgin LG, Richardson DS (2010) How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings. Proc R Soc Lond B. doi:10.1098/rspb.2009.2084 Google Scholar
  90. Spurgin LG, Van Oosterhout C, Illera JC et al (2011) Gene conversion rapidly generates major histocompatibility complex diversity in recently founded bird populations. Mol Ecol 20:5213–5225CrossRefPubMedGoogle Scholar
  91. Surridge AK, Bell DJ, Rico C, Hewitt GM (1997) Polymorphic microsatellite loci in the European rabbit (Oryctolagus cuniculus) are also amplified in other lagomorph species. Anim Genet 28:302–305CrossRefPubMedGoogle Scholar
  92. Surridge AK, Bell DJ, Hewitt GM (1999) From population structure to individual behaviour: genetic analysis of social structure in the European wild rabbit (Oryctolagus cuniculus). Biol J Linn Soc 68:57–71CrossRefGoogle Scholar
  93. Surridge A, van der Loo W, Abrantes J et al (2008) Diversity and evolutionary history of the MHC DQA gene in leporids. Immunogenetics 60:515–525CrossRefPubMedGoogle Scholar
  94. Sutton JT, Nakagawa S, Robertson BC, Jamieson IG (2011) Disentangling the roles of natural selection and genetic drift in shaping variation at MHC immunity genes. Mol Ecol 20:4408–4420CrossRefPubMedGoogle Scholar
  95. Takahata N, Nei M (1990) Allelic genealogy under overdominant and frequency-dependent selection and polymorphism of major histocompatibility complex loci. Genetics 124:967–978PubMedPubMedCentralGoogle Scholar
  96. Teacher AGF, Garner TWJ, Nichols RA (2009) Evidence for directional selection at a novel major histocompatibility class i marker in wild common frogs (Rana temporaria) Exposed to a Viral Pathogen (Ranavirus). PLoS ONE 4:e4616CrossRefPubMedPubMedCentralGoogle Scholar
  97. van Haeringen W, den Bieman M, van Zutphen L, van Lith H (1996) Polymorphic microsatellite DNA markers in the rabbit (Oryctolagus cuniculus). J Exp Anim Sci 38:49–57PubMedGoogle Scholar
  98. van Oosterhout C, Joyce DA, Cummings SM et al (2006) Balancing selection, random genetic drift, and genetic variation at the major histocompatibility complex in two wild populations of guppies (Poecilia reticulta). Evolution 60:2562–2574CrossRefPubMedGoogle Scholar
  99. Weber DS, Stewart BS, Schienman J, Lehman N (2004) Major histocompatibility complex variation at three class II loci in the northern elephant seal. Mol Ecol 13:711–718CrossRefPubMedGoogle Scholar
  100. Wells K, Brook BW, Lacy RC et al (2015) Timing and severity of immunizing diseases in rabbits is controlled by seasonal matching of host and pathogen dynamics. J R Soc Interface. doi:10.1098/rsif.2014.1184 PubMedPubMedCentralGoogle Scholar
  101. White TA, Perkins SE (2012) The ecoimmunology of invasive species. Funct Ecol 26:1313–1323CrossRefGoogle Scholar
  102. Williams CK, Parer I, Coman BJ, Burley J, Braysher ML (1995) Managing vertebrate pests: rabbits. Bureau of Resource Sciences/CSIRO Division of Wildlife and Ecology, Australian Government Publishing Service, CanberraGoogle Scholar
  103. Xu B, Yang Z (2013) pamlX: a graphical user interface for PAML. Mol Biol Evol 30:2723–2724CrossRefPubMedGoogle Scholar
  104. Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591CrossRefPubMedGoogle Scholar
  105. Yang Z, Wong WSW, Nielsen R (2005) Bayes empirical bayes inference of amino acid sites under positive selection. Mol Biol Evol 22:1107–1118CrossRefPubMedGoogle Scholar
  106. Zenger KR, Richardson BJ, Vachot-Griffin A-M (2003) A rapid population expansion retains genetic diversity within European rabbits in Australia. Mol Ecol 12:789–794CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Nina Schwensow
    • 1
    • 2
    • 3
  • Camila J. Mazzoni
    • 2
    • 4
  • Elena Marmesat
    • 5
  • Joerns Fickel
    • 2
    • 6
  • David Peacock
    • 7
  • John Kovaliski
    • 7
  • Ron Sinclair
    • 1
  • Phillip Cassey
    • 1
  • Brian Cooke
    • 8
  • Simone Sommer
    • 2
    • 3
  1. 1.School of Biological SciencesUniversity of AdelaideAdelaideAustralia
  2. 2.Department of Evolutionary GeneticsLeibniz Institute for Zoo and Wildlife Research (IZW)BerlinGermany
  3. 3.Institute of Evolutionary Ecology and Conservation GenomicsUniversity of UlmUlmGermany
  4. 4.Berlin Center for Genomics in Biodiversity Research Koenigin-Luise-Str. 6-8BerlinGermany
  5. 5.Department of Integrative EcologyDoñana Biological Station (EBD-CSIC)SevilleSpain
  6. 6.Molecular Ecology and EvolutionInstitute for Biochemistry and BiologyPotsdam UniversityPotsdamGermany
  7. 7.Biosecurity SAAdelaideAustralia
  8. 8.Institute for Applied EcologyUniversity of CanberraCanberraAustralia

Personalised recommendations