Skip to main content
Log in

Differential proteomics reveals main determinants for the improved pectinase activity in UV-mutagenized Aspergillus niger strain

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objectives

To reveal the potential mechanism and key determinants that contributed to the improved pectinase activity in Aspergillus niger mutant EIMU2, which was previously obtained by UV-mutagenesis from the wild-type A. niger EIM-6.

Results

Proteomic analysis for Aspergillus niger EIMU2 by two-dimensional electrophoresis demonstrated that mutant EIMU2 harbored a multiple enzyme system for the degradation of pectin, mainly constituting by main-chain-cleaving enzymes polygalacturonase, pectate lyase, pectinesterase, and some accessory enzymes rhamnogalacturonan lyase and arabinofuranosidase. Further quantitatively differential proteomic analysis revealed that the quantities of four proteins, pectinesterase, rhamnogalacturonan lyase A, DNA-directed RNA polymerase A, and a hypothetical protein in strain EIMU2 were much higher than those in EIM-6. PCR amplification, sequencing and alignment analysis of genes for the two main members of pectin-degrading enzymes, pectate lyase and polygalacturonase showed that their sequences were completely consistent in A. niger EIM-6 and mutant EIMU2.

Conclusions

The result demonstrated that the improved pectinase activity by UV-mutagenesis in A. niger EIMU2 was probably contributed to the up-regulated expression of rhamnogalacturonan lyase, or pectinesterase, which resulted in the optimization of synergy amongst different components of pectin-degrading enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alazi E, Knetsch T, Di Falco M, Reid ID, Arentshorst M, Visser J, Tsang A, Ram AFJ (2018) Inducer-independent production of pectinases in Aspergillus niger by overexpression of the D-galacturonic acid-responsive transcription factor gaaR. Appl Microbiol Biotechnol 102(6):2723–2736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benoit I, Coutinho PM, Schols HA, Gerlach JP, Henrissat B, de Vries RP (2012) Degradation of different pectinase by fungi: correlations and contrasts between the pectinolytic enzyme sets identified in genomes and the growth on pectins of different origin. BMC Genom 13:321

    Article  CAS  Google Scholar 

  • Bonnin E, Mutic J, Nikolic J, Burr S, Robert P, Crépeau MJ (2015) Methylesterase behaviour is related to polysaccharide organisation in model systems mimicking cell walls. Carbohydr Polym 124:57–65

    Article  CAS  PubMed  Google Scholar 

  • Bonnin E, Alvarado C, Crépeau MJ, Bouchet B, Garnier C, Jamme F, Devaux MF (2019) Mobility of pectin methylesterase in pectin/cellulose gels is enhanced by the presence of cellulose and by its catalytic capacity. Sci Rep 9(1):12551

    Article  PubMed  PubMed Central  Google Scholar 

  • Caffall KH, Mohnen D (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res 344(14):1879–1900

    Article  CAS  PubMed  Google Scholar 

  • Cavello I, Albanesi A, Fratebianchi D, Garmedia G, Vero S, Cavalitto S (2017) Pectinolytic yeasts from cold environments: novel findings of Guehomyces pullulans, Cystofilobasidium infirmominiatum and Cryptococcus adeliensis producing pectinases. Extremophiles 21(2):319–329

    Article  CAS  PubMed  Google Scholar 

  • Chang HX, Yendrek CR, Caetano-Anolles G, Hartman GL (2016) Genomic characterization of plant cell wall degrading enzymes and in silico analysis of xylanses and polygalacturonases of Fusarium virguliforme. BMC Microbiol 16:147

    Article  PubMed  PubMed Central  Google Scholar 

  • De Vries RP, Kester HC, Poulsen CH, Benen JA, Visser J (2000) Synergy between accessory enzymes from Aspergillus in the degradation of plant cell wall polysaccharides. Carbohydr Res 327(4):401–410

    Article  PubMed  Google Scholar 

  • De Vries RP, Visser J (2001) Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev 65(4):497–522

    Article  PubMed  PubMed Central  Google Scholar 

  • El Enshasy HA, Elsayed EA, Suhaimi N, Malek RA, Esawy M (2018) Bioprocess optimization for pectinase production using Aspergillus niger in a submerged cultivation system. BMC Biotechnol 18(1):71

    Article  PubMed  PubMed Central  Google Scholar 

  • Gummadi SN, Panda T (2003) Purification and biochemical properties of microbial pectinases-a review. Process Biochem 38:987–996

    Article  CAS  Google Scholar 

  • Hoondal GS, Tiwari RP, Tewari R, Dahiya N, Beg QK (2002) Microbial alkaline pectinases and their industrial applications: a review. Appl Microbiol Biotechnol 59(4–5):409–418

    CAS  PubMed  Google Scholar 

  • Huang D, Song Y, Liu Y, Qin Y (2019) A new strain of Aspergillus tubingensis for high-activity pectinase production. Braz J Microbiol 50(1):53–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hugouvieux-Cotte-Pattat N, Condemine G, Nasser W, Reverchon S (1996) Regulation of pectinolysis in Erwinia chrysanthemi. Annu Rev Microbiol 50:213–257

    Article  CAS  PubMed  Google Scholar 

  • Hugouvieux-Cotte-Pattat N, Condemine G, Shevchik VE (2014) Bacterial pectate lyases, structural and functional diversity. Environ Microbiol Rep 6(5):427–440

    Article  CAS  PubMed  Google Scholar 

  • Jafra S, Figura I, Hugouvieux-Cotte-Pattat N, Lojkowska E (1999) Expression of Erwinia chrysanthemi pectinase genes peli, pell, and pelz during infection of potato tubers. Mol Plant Microbe Interact 12(10):845–851

    Article  CAS  Google Scholar 

  • Kashyap DR, Vohra PK, Chopra S, Tewari R (2001) Applications of pectinases in the commercial sector: a review. Bioresour Technol 77(3):215–227

    Article  CAS  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) ClustalW and ClustalX version 2. Bioinformatics 23:2947–2948

    Article  CAS  Google Scholar 

  • Li J, Zhou P, Liu H, Xiong C, Lin J, Xiao W, Gong Y, Liu Z (2014) Synergism of cellulase, xylanase, and pectinase on hydrolyzing sugarcane bagasse resulting from different pretreatment technologies. Bioresour Technol 155:258–265

    Article  CAS  PubMed  Google Scholar 

  • Lin WL, Tian BY, Qin Y, Lv RR, Wang CX, Qiang HN, Huang JZ (2010) Selection and optimization of a high pectinase-producing strain by UV mutation and response surface methodology. Ind Microbiol 40(2):1–9 (Article in Chinese)

    Google Scholar 

  • Lopez-Sanchez P, Martinez-Sanz M, Bonilla MR, Wang D, Gilbert EP, Stokes JR, Gidley MJ (2017) Cellulose-pectin composite hydrogels: Intermolecular interactions and material properties depend on order of assembly. Carbohydr Polym 162:71–81

    Article  CAS  PubMed  Google Scholar 

  • Lopes FJF, Araujo EF, Queiroz MV (2004) Easy detection of green fluorescent protein multicopy transformants in Penicillium griseoroseum. Genet Mol Res 3:449–455

    CAS  PubMed  Google Scholar 

  • Martens-Uzunova ES, Schaap PJ (2009) Assessment of the pectin degrading enzyme network of Aspergillus niger by functional genomics. Fungal Genet Biol 46(1):S170–S179

    Article  CAS  PubMed  Google Scholar 

  • Mohandas A, Raveendran S, Parameswaran B, Abraham A, Athira RSR, Mathew AK, Pandey A (2018) Production of Pectinase from Bacillus sonorensis MPTD1. Food Technol Biotechnol 56(1):110–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ochoa-Jiménez VA, Berumen-Varela G, Burgara-Estrella A, Orozco-Avitia JA, Ojeda-Contreras ÁJ, Trillo-Hernández EA, Rivera-Domínguez M, Troncoso-Rojas R, Báez-Sañudo R, Datsenka T, Handa AK, Tiznado-Hernández ME (2018) Functional analysis of tomato rhamnogalacturonan lyase gene Solyc11g011300 during fruit development and ripening. J Plant Physiol 231:31–40

    Article  PubMed  Google Scholar 

  • Paniagua C, Kirby AR, Gunning AP, Morris VJ, Matas AJ, Quesada MA, Mercado JA (2017) Unravelling the nanostructure of strawberry fruit pectins by endo-polygalacturonase digestion and atomic force microscopy. Food Chem 224:270–279

    Article  CAS  PubMed  Google Scholar 

  • Pakarinen A, Zhang J, Brock T, Maijala P, Viikari L (2012) Enzymatic accessibility of fiber hemp is enhanced by enzymatic or chemical removal of pectin. Bioresour Technol 107:275–281

    Article  CAS  PubMed  Google Scholar 

  • Patidar MK, Nighojkar S, Kumar A, Nighojkar A (2018) Pectinolytic enzymes-solid state fermentation, assay methods and applications in fruit juice industries: a review. 3 Biotech 8(4):199

    Article  PubMed  PubMed Central  Google Scholar 

  • Qiang HN, Yang XW, Tian BY, Ke CR, Lin WL, Lv RR, Huang W, Wang CX, Huang JZ (2009) Expression of a pectin lyase A gene from Aspergillus niger in Pichia pastoris GS115. Chin J Biotechnol 25(12):1962–1968 (Article in Chinese)

    CAS  Google Scholar 

  • Roy K, Dey S, Uddin MK, Barua R, Hossain MT (2018) Extracellular pectinase from a novel bacterium Chryseobacterium indologenes strain SD and its application in fruit juice clarification. Enzyme Res 2018:3859752

    Article  PubMed  PubMed Central  Google Scholar 

  • Shah P, Gutierrez-Sanchez G, Orlando R, Bergmann C (2009) A proteomic study of pectin-degrading enzymes secreted by Botrytis cinerea grown in liquid culture. Proteomics 9(11):3126–3135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunnotel O, Nigam P (2002) Pectinolytic activity of bacteria isolated from soil and two fungal strains during submerged fermentation. World J Microbiol Biotechnol 18(9):835–839

    Article  CAS  Google Scholar 

  • Tanaka Y, Suzuki T, Nakamura L, Nakamura M, Ebihara S, Kurokura T, Iigo M, Dohra H, Habu N, Konno N (2019) A GH family 28 endo-polygalacturonase from the brown-rot fungus Fomitopsis palustris: purification, gene cloning, enzymatic characterization and effects of oxalate. Int J Biol Macromol 123:108–116

    Article  CAS  PubMed  Google Scholar 

  • Teixeira JA, Gonçalves DB, de Queiroz MV, de Araújo EF (2011) Improved pectinase production in Penicillium griseoroseum recombinant strains. J Appl Microbiol 111(4):818–825

    Article  CAS  PubMed  Google Scholar 

  • Thite VS, Nerurkar AS (2018) Physicochemical characterization of pectinase activity from Bacillus spp. and their accessory role in synergism with crude xylanase and commercial cellulase in enzyme cocktail mediated saccharification of agrowaste biomass. J Appl Microbiol 124(5):1147–1163

    Article  CAS  PubMed  Google Scholar 

  • Thomas L, Joseph A, Gottumukkala LD (2014) Xylanase and cellulase systems of Clostridium sp.: an insight on molecular approaches for strain improvement. Bioresour Technol 158:343–350

    Article  CAS  PubMed  Google Scholar 

  • van Santen Y, Benen JA, Schroter K, Kalk KH, Armand S, Visser J, Dijkstra BW (1999) 1.68-A crystal structure of endopolygalacturonase II from Aspergillus niger and identification of active site residues by site-directed mutagenesis. J Biol Chem 274(43):30474–30480

    Article  PubMed  Google Scholar 

  • Vuppu S, Tulsyan S (2012) Screening, characterization and bioinformatics analysis of pectinase producing actinomycetes from Vellore and Chittoor-an overview. J Biotechnol Biomater 2:6

    Google Scholar 

  • Wasinger VC, Cordwell SJ, Cerpa-Poljak A, Yan JX, Gooley AA, Wilkins MR, Duncan MW, Harris R, Williams KL, Humphery-Smith I (1995) Progress with gene-product mapping of the Mollicutes: Mycoplasoma genitalium. Electrophoresis 16(7):1090–1094

    Article  CAS  PubMed  Google Scholar 

  • Yang XW, Lin WL, Tian BY, Ke CR, Huang W, Huang JZ (2009) Identification of Aspergillus niger EIM-6 with highly yield of pectinase and optimization of its submerged fermentation conditions by response surface methodology. J Fujian Normal Univ 25(2):68–74 (Article in Chinese)

    Google Scholar 

  • Yang Y, Yu Y, Liang Y, Anderson CT, Cao J (2018) A profusion of molecular scissors for pectins: classification, expression, and functions of plant polygalacturonases. Front Plant Sci 9:1208

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Pakarinen A, Viikari L (2013) Synergy between cellulases and pectinases in the hydrolysis of hemp. Bioresour Technol 129:302–307

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, van Kan JAL (2013) Pectin as a barrier and nutrient source for fungal plant pathogens. In: Kempken F (ed) Agricultural applications. The mycota (A comprehensive treatise on fungi as experimental systems for basic and applied research). Springer, Berlin

  • Zheng YX, Wang YL, Pan J, Zhang JR, Dai Y, Chen KY (2017) Semi-continuous production of high-activity pectinases by immobilized Rhizopus oryzae using tobacco wastewater as substrate and their utilization in the hydrolysis of pectin-containing lignocellulosic biomass at high solid content. Bioresour Technol 241:1138–1144

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (Nos. 31670125; 31660544) and the Department of Science and Technology of Fujian Province (No. 2020J01173).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoyu Tian.

Ethics declarations

Conflict of interest

The authors declare no financial or commercial conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, W., Xu, X., Lv, R. et al. Differential proteomics reveals main determinants for the improved pectinase activity in UV-mutagenized Aspergillus niger strain. Biotechnol Lett 43, 909–918 (2021). https://doi.org/10.1007/s10529-020-03075-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-020-03075-w

Keywords

Navigation