Skip to main content
Log in

Enhanced biomass and oxidative stress tolerance of Synechococcus elongatus PCC 7942 overexpressing the DHAR gene from Brassica juncea

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objectives

To improve the oxidative stress tolerance, biomass yield, and ascorbate/dehydroascorbate (AsA/DHA) ratio of Synechococcus elongatus PCC 7942 in the presence of H2O2, by heterologous expression of the dehydroascorbate reductase (DHAR) gene from Brassica juncea (BrDHAR).

Results

Under H2O2 stress, overexpression of BrDHAR in the transgenic strain (BrD) of S. elongatus greatly increased the AsA/DHA ratio. As part of the AsA recycling system, the oxidative stress response induced by reactive oxygen species was enhanced, and intracellular H2O2 level decreased. In addition, under H2O2 stress conditions, the BrD strain displayed increased growth rate and biomass, as well as higher chlorophyll content and deeper pigmentation than did wild-type and control strains.

Conclusion

By maintaining the AsA pool and redox homeostasis, the heterologous expression of BrDHAR increased S. elongatus tolerance to H2O2 stress, improving the biomass yield under these conditions. The results suggest that the BrD strain of S. elongatus, with its ability to attenuate the deleterious effects of ROS caused by environmental stressors, could be a promising platform for the generation of biofuels and other valuable bioproducts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bajguz A, Hayat S (2009) Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Biochem 47:1–8

    Article  CAS  PubMed  Google Scholar 

  • Banerjee M, Ballal A, Apte SK (2012) A novel glutaredoxin domain-containing peroxiredoxin ‘All1541’ protects the N2-fixing cyanobacterium Anabaena PCC 7120 from oxidative stress. Biochem J 442:671–680

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Gallie DR (2006) Dehydroascorbate reductase affects leaf growth, development, and function. Plant Physiol 142:775–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Young TE, Ling J, Chang SC, Gallie DR (2003) Increasing vitamin C content of plants through enhanced ascorbate recycling. Proc Natl Acad Sci USA 100:3525–3530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deutsch JC (2000) Dehydroascorbic acid. J Chromatogr 88:301–309

    Google Scholar 

  • Dipierro S, Borraccino G (1991) Dehydroascorbate reductase from potato tubers. Phytochemistry 30:427–429

    Article  CAS  Google Scholar 

  • Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Morshima I, Shibahara T, Inanaga S, Tanaka K (2006) Enhanced tolerance to ozone and drought stresses in transgenic tobacco overexpressing dehydroascorbate reductase in cytosol. Physiol Plant 127:57–65

    Article  CAS  Google Scholar 

  • Falcón LI, Magallón S, Castillo A (2010) Dating the cyanobacterial ancestor of the chloroplast. ISME J 4:777–783

    Article  PubMed  Google Scholar 

  • Garcia V, Stevens R, Gil L, Gilbert L, Gest N, Petit J, Faurobert M, Maucourt M, Deborde C, Moing A, Poessel JL, Jacob D, Bouchet JP, Giraudel JL, Gouble B, Page D, Alhagdow M, Massot C, Gautier H, Lemaire-Chamley M, de Daruvar A, Rolin D, Usadel B, Lahaye M, Causse M, Baldet P, Rothan C (2009) An integrative genomics approach for deciphering the complex interactions between ascorbate metabolism and fruit growth and composition in tomato. CR Biol 332:1007–1021

    Article  CAS  Google Scholar 

  • Gillespie RG, Emerson BC (2007) Evolutionary biology: adaptation under a microscope. Nature 446:386–387

    Article  CAS  PubMed  Google Scholar 

  • Halimatul HSM, Ehira S, Awai K (2014) Fatty alcohols can complement functions of heterocyst specific glycolipids in Anabaena sp. PCC 7120. Biochem Biophys Res Commun 450:178–183

    Article  CAS  PubMed  Google Scholar 

  • Hossain MA, Asada K (1984) Purification of dehydroascorbate reductase from spinach and its characterization as a thiol enzyme. Plant Cell Physiol 25:85–92

    CAS  Google Scholar 

  • Kato Y, Urano J, Maki Y, Ushimaru T (1997) Purification and characterization of dehydroascorbate reductase from rice. Plant Cell Physiol 38:173–178

    Article  CAS  Google Scholar 

  • Kim YS, Kim IS, Shin SY, Park TH, Park HM, Kim YH, Lee GS, Kang HG, Lee SH, Yoon HS (2014) Overexpression of dehydroascorbate reductase confers enhanced tolerance to salt stress in rice plants (Oryza sativa L. japonica). J Agron Crop Sci 200:444–456

    Article  CAS  Google Scholar 

  • Kwon SY, Choi SM, Ahn YO, Lee HS, Lee HB, Park YM, Kwak SS (2003) Enhanced stress-tolerance of transgenic tobacco plants expressing a human dehydroascorbate reductase gene. J Plant Physiol 160:347–353

    Article  CAS  PubMed  Google Scholar 

  • Latifi A, Ruiz M, Zhang CC (2009) Oxidative stress in cyanobacteria. FEMS Microbiol Rev 33:258–278

    Article  CAS  PubMed  Google Scholar 

  • Ma B, Gao L, Zhang H, Cui J, Shen Z (2012) Aluminum-induced oxidative stress and changes in antioxidant defenses in the roots of rice varieties differing in Al tolerance. Plant Cell Rep 31:687–696

    Article  CAS  PubMed  Google Scholar 

  • Möllers KB, Cannella D, Jørgensen H, Frigaard NU (2014) Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation. Biotechnol Biofuels 7:64

    Article  PubMed  PubMed Central  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  PubMed  Google Scholar 

  • Pignocchi C, Fletcher JM, Wilkinson JE, Barnes JD, Foyer CH (2003) The function of ascorbate oxidase in tobacco. Plant Physiol 132:1631–1641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potters G, De Gara L, Asard H, Horemans N (2002) Ascorbate and glutathione: guardians of the cell cycle, partners in crime? Plant Physiol Biochem 40:537–548

    Article  CAS  Google Scholar 

  • Qin A, Shi Q, Yu X (2011) Ascorbic acid content in transgenic potato plants overexpressing two dehydroascorbate reductase genes. Mol Biol Rep 38:1557–1566

    Article  CAS  PubMed  Google Scholar 

  • Sachs MM, Vartapetian BB (2007) Plant anaerobic stress I. Metabolic adaptation to oxygen deficiency. Plant Stress 1:123–135

    Google Scholar 

  • Shimaoka T, Yokota A, Miyake C (2000) Purification and characterization of chloroplast dehydroascorbate reductase from spinach leaves. Plant Cell Physiol 41:1110–1118

    Article  CAS  PubMed  Google Scholar 

  • Wheeler G, Ishikawa T, Pornsaksit V, Smirnoff N (2015) Evolution of alternative biosynthetic pathways for vitamin C following plastid acquisition in photosynthetic eukaryotes. Elife 13:4

    Google Scholar 

  • Wolff SP (1994) Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for measurement of hydroperoxides. Methods Enzymol 233:182–189

    Article  CAS  Google Scholar 

  • Yin LN, Wang SW, Eltayeb AE, Uddin MI, Yamamoto Y, Tsuji W, Takeuchi Y, Tanaka K (2010) Overexpression of dehydroascorbate reductase, but not monodehydroascorbate reductase, confers tolerance to aluminum stress in transgenic tobacco. Planta 231:609–621

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S, Tamaoki M, Shikano T (2006) Cytosolic dehydroascorbate reductase is important for ozone tolerance in Arabidopsis thaliana. Plant Cell Physiol 47:304–308

    Article  CAS  PubMed  Google Scholar 

  • Zou L, Li H, Ouyang B, Zhang J, Ye Z (2006) Cloning and mapping of genes involved in tomato ascorbic acid biosynthesis and metabolism. Plant Sci 170:120–127

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Susan S. Golden, Spencer Diamond, and Yong-Ick Kim for helpful discussions and assistance with the Materials and Methods. This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2016R1A6A1A05011910), Korea, and the Advanced Biomass R&D Center (ABC) of Global Frontier Project funded by the Ministry of Science, ICT and Future Planning (2015M3A6A2065698), Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to James W. Golden or Ho-Sung Yoon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, YS., Kim, IS., Boyd, J.S. et al. Enhanced biomass and oxidative stress tolerance of Synechococcus elongatus PCC 7942 overexpressing the DHAR gene from Brassica juncea . Biotechnol Lett 39, 1499–1507 (2017). https://doi.org/10.1007/s10529-017-2382-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-017-2382-6

Keywords

Navigation