Skip to main content

Advertisement

Log in

Metabolic engineering strategies for improving xylitol production from hemicellulosic sugars

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Xylitol is a five-carbon sugar alcohol with potential for use as a sweetener. Industrially, xylitol is currently produced by chemical hydrogenation of d-xylose using Raney nickel catalysts and this requires expensive separation and purification steps as well as high pressure and temperature that lead to environmental pollution. Highly efficient biotechnological production of xylitol using microorganisms is gaining more attention and has been proposed as an alternative process. Although the biotechnological method has not yet surpassed the advantages of chemical reduction in terms of yield and cost, various strategies offer promise for the biotechnological production of xylitol. In this review, the focus is on the most recent developments of the main metabolic engineering strategies for improving the production of xylitol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmad I, Shim WY, Jeon WY, Yoon BH, Kim JH (2012) Enhancement of xylitol production in Candida tropicalis by co-expression of two genes involved in pentose phosphate pathway. Bioprocess Biosyst Eng 35:199–204

    Article  PubMed  CAS  Google Scholar 

  • Akinterinwa O, Cirino PC (2009) Heterologous expression of d-xylulokinase from Pichia stipitis enables high levels of xylitol production by engineered Escherichia coli growing on xylose. Metab Eng 11:48–55

    Article  PubMed  CAS  Google Scholar 

  • Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314:1565–1568

    Article  PubMed  CAS  Google Scholar 

  • Cheng KK, Zhang JA, Ling HZ, Ping WX, Huang W, Ge JP, Xu JM (2009) Optimization of pH and acetic acid concentration for bioconversion of hemicellulose from corncobs to xylitol by Candida tropicalis. Biochem Eng J 43:203–207

    Article  CAS  Google Scholar 

  • Cheng KK, Ling HZ, Zhang JA, Ping WX, Huang W, Ge JP, Xu JM (2010) Strain isolation and study on process parameters for xylose-to-xylitol bioconversion. Biotechnol Biotechnol Equip 24:1606–1611

    Article  CAS  Google Scholar 

  • Chin JW, Cirino PC (2011) Improved NADPH supply for xylitol production by engineered Escherichia coli with glycolytic mutations. Biotechnol Prog 27:333–341

    Article  PubMed  CAS  Google Scholar 

  • Chin JW, Khankal R, Monroe CA, Maranas CD, Cirino PC (2009) Analysis of NADPH supply during xylitol production by engineered Escherichia coli. Biotechnol Bioeng 102:209–220

    Article  PubMed  CAS  Google Scholar 

  • Cirino PC, Chin JW, Ingram LO (2006) Engineering Escherichia coli for xylitol production from glucose–xylose mixtures. Biotechnol Bioeng 95:1167–1176

    Article  PubMed  CAS  Google Scholar 

  • de Freitas BR, dos Santos JC, da Silva SS (2011) A novel use for sugarcane bagasse hemicellulosic fraction: xylitol enzymatic production. Biomass Bioenergy 35:3241–3246

    Article  Google Scholar 

  • Desai TA, Rao CV (2010) Regulation of arabinose and xylose metabolism in Escherichia coli. Appl Environ Microb 76:1524–1532

    Article  CAS  Google Scholar 

  • Deutscher J (2008) The mechanisms of carbon catabolite repression in bacteria. Curr Opin Microbiol 11:87–93

    Article  PubMed  CAS  Google Scholar 

  • Deutscher J, Francke C, Postma PW (2006) How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 70:939–1031

    Article  PubMed  CAS  Google Scholar 

  • Escalante A, Salinas Cervantes A, Gosset G, Bolivar F (2012) Current knowledge of the Escherichia coli phosphoenolpyruvate-carbohydrate phosphotransferase system: peculiarities of regulation and impact on growth and product formation. Appl Microbiol Biotechnol 94:1483–1494

    Article  PubMed  CAS  Google Scholar 

  • Gírio FM, Carvalheiro F, Duarte LC, Bogel-Łukasik R (2012) Deconstruction of the hemicellulose fraction from lignocellulosic materials into simple sugars. In: Anuj KC, Silvio SdS (eds) d-Xylitol. Springer, Berlin, pp 3–37

    Chapter  Google Scholar 

  • Gorke B, Stulke J (2008) Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6:613–624

    Article  PubMed  Google Scholar 

  • Gosset G (2005) Improvement of Escherichia coli production strains by modification of the phosphoenolpyruvate: sugar phosphotransferase system. Microb Cell Fact 4:14

    Article  PubMed  Google Scholar 

  • Granstrom TB, Izumori K, Leisola M (2007a) A rare sugar xylitol. Part I: the biochemistry and biosynthesis of xylitol. Appl Microbiol Biotechnol 74:277–281

    Article  PubMed  Google Scholar 

  • Granstrom TB, Izumori K, Leisola M (2007b) A rare sugar xylitol. Part II: biotechnological production and future applications of xylitol. Appl Microbiol Biotechnol 74:273–276

    Article  PubMed  Google Scholar 

  • Groff D, Benke PI, Batth TS, Bokinsky G, Petzold CJ, Adams PD, Keasling JD (2012) Supplementation of intracellular XylR leads to coutilization of hemicellulose sugars. Appl Environ Microbiol 78:2221–2229

    Article  PubMed  CAS  Google Scholar 

  • Guo X, Zhang R, Li Z, Dai D, Li C, Zhou X (2013) A novel pathway construction in Candida tropicalis for direct xylitol conversion from corncob xylan. Bioresour Technol 128:547–552

    Article  PubMed  CAS  Google Scholar 

  • Hahn-Hagerdal B, Wahlbom CF, Gardonyi M, van Zyl WH, Cordero Otero RR, Jonsson LJ (2001) Metabolic engineering of Saccharomyces cerevisiae for xylose utilization. Adv Biochem Eng Biotechnol 73:53–84

    PubMed  CAS  Google Scholar 

  • Higgins CF (2007) Multiple molecular mechanisms for multidrug resistance transporters. Nature 446:749–757

    Article  PubMed  CAS  Google Scholar 

  • Jeon YJ, Shin HS, Rogers PL (2011) Xylitol production from a mutant strain of Candida tropicalis. Lett Appl Microbiol 53:106–113

    Article  PubMed  CAS  Google Scholar 

  • Jeon WY, Yoon BH, Ko BS, Shim WY, Kim JH (2012) Xylitol production is increased by expression of codon-optimized Neurospora crassa xylose reductase gene in Candida tropicalis. Bioprocess Biosyst Eng 35:191–198

    Article  PubMed  CAS  Google Scholar 

  • Jeon WY, Shim WY, Lee SH, Choi JH, Kim JH (2013) Effect of heterologous xylose transporter expression in Candida tropicalis on xylitol production rate. Bioprocess Biosyst Eng 36:809–817

    Article  PubMed  CAS  Google Scholar 

  • Jojima T, Omumasaba CA, Inui M, Yukawa H (2010) Sugar transporters in efficient utilization of mixed sugar substrates: current knowledge and outlook. Appl Microbiol Biotechnol 85:471–480

    Article  PubMed  CAS  Google Scholar 

  • Khankal R, Chin JW, Cirino PC (2008) Role of xylose transporters in xylitol production from engineered Escherichia coli. J Biotechnol 134:246–252

    Article  PubMed  CAS  Google Scholar 

  • Kim JH, Block DE, Mills DA (2010) Simultaneous consumption of pentose and hexose sugars: an optimal microbial phenotype for efficient fermentation of lignocellulosic biomass. Appl Microbiol Biotechnol 88:1077–1085

    Article  PubMed  CAS  Google Scholar 

  • Kim SR, Ha SJ, Wei N, Oh EJ, Jin YS (2012) Simultaneous co-fermentation of mixed sugars: a promising strategy for producing cellulosic ethanol. Trends Biotechnol 30:274–282

    Article  PubMed  Google Scholar 

  • Lee JK, Koo BS, Kim SY (2003a) Cloning and characterization of the xyl1 gene, encoding an NADH-preferring xylose reductase from Candida parapsilosis, and its functional expression in Candida tropicalis. Appl Environ Microbiol 69:6179–6188

    Article  PubMed  CAS  Google Scholar 

  • Lee JK, Koo BS, Kim SY (2003b) Cloning and characterization of the xyl1 gene, encoding an NADH-preferring xylose reductase from Candida parapsilosis, and its functional expression in Candida tropicalis. Appl Environ Microb 69:6179–6188

    Article  CAS  Google Scholar 

  • Li M, Meng X, Diao E, Du F (2012) Xylitol production by Candida tropicalis from corn cob hemicellulose hydrolysate in a two-stage fed-batch fermentation process. J Chem Technol Biotechnol 87:387–392

    Article  CAS  Google Scholar 

  • Martín JF, Casqueiro J, Liras P (2005) Secretion systems for secondary metabolites: how producer cells send out messages of intercellular communication. Curr Opin Microbiol 8:282–293

    Article  PubMed  Google Scholar 

  • Mussatto SI, Roberto IC (2008) Establishment of the optimum initial xylose concentration and nutritional supplementation of brewer’s spent grain hydrolysate for xylitol production by Candida guilliermondii. Process Biochem 43:540–546

    Article  CAS  Google Scholar 

  • Nair NU, Zhao H (2008) Evolution in reverse: engineering a d-xylose-specific xylose reductase. ChemBioChem 9:1213–1215

    Article  PubMed  CAS  Google Scholar 

  • Nair NU, Zhao H (2010) Selective reduction of xylose to xylitol from a mixture of hemicellulosic sugars. Metab Eng 12:462–468

    Article  PubMed  CAS  Google Scholar 

  • Nakashima N, Tamura T (2012) A new carbon catabolite repression mutation of Escherichia coli, mlc*, and its use for producing isobutanol. J Biosci Bioeng 114:38–44

    Article  PubMed  CAS  Google Scholar 

  • Ni L, Tonthat NK, Chinnam N, Schumacher MA (2013) Structures of the Escherichia coli transcription activator and regulator of diauxie, XylR: an AraC DNA-binding family member with a LacI/GalR ligand-binding domain. Nucleic Acid Res 41:1998–2008

    Article  PubMed  CAS  Google Scholar 

  • Oh EJ, Ha SJ, Rin Kim S, Lee WH, Galazka JM, Cate JH, Jin YS (2013) Enhanced xylitol production through simultaneous co-utilization of cellobiose and xylose by engineered Saccharomyces cerevisiae. Metab Eng 15:226–234

    Article  PubMed  CAS  Google Scholar 

  • Ostash B, Doud E, Walker S (2012) ABC transporter genes from Streptomyces ghanaensis moenomycin biosynthetic gene cluster: roles in antibiotic production and export. Arch Microbiol 194:915–922

    Article  PubMed  CAS  Google Scholar 

  • Palchaudhuri S, Rehse SJ, Hamasha K, Syed T, Kurtovic E, Kurtovic E, Stenger J (2011) Raman spectroscopy of xylitol uptake and metabolism in Gram-positive and Gram-negative bacteria. Appl Environ Microbiol 77:131–137

    Article  PubMed  CAS  Google Scholar 

  • Petschacher B, Nidetzky B (2008) Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae. Microb Cell Fact 7:9

    Article  PubMed  Google Scholar 

  • Prakash G, Varma AJ, Prabhune A, Shouche Y, Rao M (2011) Microbial production of xylitol from d-xylose and sugarcane bagasse hemicellulose using newly isolated thermotolerant yeast Debaryomyces hansenii. Bioresour Technol 102:3304–3308

    Article  PubMed  CAS  Google Scholar 

  • Ravella SR, Gallagher J, Fish S, Prakasham RS (2012) Overview on commercial production of xylitol, economic analysis and market trends. In: Silvio SdS, Anuj KC (eds) d-Xylitol. Springer, Berlin, pp 291–306

    Chapter  Google Scholar 

  • Sakakibara Y, Saha BC, Taylor P (2009) Microbial production of xylitol from l-arabinose by metabolically engineered Escherichia coli. J Biosci Bioeng 107:506–511

    Article  PubMed  CAS  Google Scholar 

  • Salgado JM, Converti A, Domínguez JM (2012) Fermentation strategies explored for xylitol production. In: Silvio SdS, Anuj KC (eds) d-Xylitol. Springer, Berlin, pp 161–191

    Chapter  Google Scholar 

  • Santos CNS, Stephanopoulos G (2008) Combinatorial engineering of microbes for optimizing cellular phenotype. Curr Opin Chem Biol 12:168–176

    Article  PubMed  CAS  Google Scholar 

  • Santos CNS, Xiao WH, Stephanopoulos G (2012) Rational, combinatorial, and genomic approaches for engineering l-tyrosine production in Escherichia coli. Proc Natl Acad Sci USA 109:13538–13543

    Article  PubMed  CAS  Google Scholar 

  • Sasaki M, Jojima T, Inui M, Yukawa H (2010) Xylitol production by recombinant Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 86:1057–1066

    Article  PubMed  CAS  Google Scholar 

  • Schleif R (2003) AraC protein: a love–hate relationship. BioEssays 25:274–282

    Article  PubMed  CAS  Google Scholar 

  • Sun L, Zeng X, Yan C, Sun X, Gong X, Rao Y, Yan N (2012) Crystal structure of a bacterial homologue of glucose transporters GLUT1-4. Nature 490:361–366

    Article  PubMed  CAS  Google Scholar 

  • Tsakraklides V, Shaw AJ, Miller BB, Hogsett DA, Herring CD (2012) Carbon catabolite repression in Thermoanaerobacterium saccharolyticum. Biotechnol Biofuels 5:85

    Article  PubMed  CAS  Google Scholar 

  • Tyo KE, Alper HS, Stephanopoulos GN (2007) Expanding the metabolic engineering toolbox: more options to engineer cells. Trends Biotechnol 25:132–137

    Article  PubMed  CAS  Google Scholar 

  • Vinuselvi P, Kim MK, Lee SK, Ghim CM (2012) Rewiring carbon catabolite repression for microbial cell factory. BMB Rep 45:59–70

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Wu D, Tang P, Fan X, Yuan Q (2012) Xylitol production from corncob hydrolysate using polyurethane foam with immobilized Candida tropicalis. Carbohyd Polym 90:1106–1113

    Article  CAS  Google Scholar 

  • Wei N, Xu H, Kim SR, Jin YS (2013) Deletion of FPS1, encoding aquaglyceroporin Fps1p, improves xylose fermentation by engineered Saccharomyces cerevisiae. Appl Environ Microbiol 79:3193–3201

    Article  PubMed  CAS  Google Scholar 

  • Yoon BH, Jeon WY, Shim WY, Kim JH (2011) l-arabinose pathway engineering for arabitol-free xylitol production in Candida tropicalis. Biotechnol Lett 33:747–753

    Article  PubMed  CAS  Google Scholar 

  • Zhang FW, Qiao DR, Xu H, Liao C, Li SL, Cao Y (2009) Cloning, expression, and characterization of xylose reductase with higher activity from Candida tropicalis. J Microbiol 47:351–357

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Geng A, Yao C, Lu Y, Li Q (2012) Xylitol production from d-xylose and horticultural waste hemicellulosic hydrolysate by a new isolate of Candida athensensis SB18. Bioresource Technol 105:134–141

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Natural Science Foundation of China (Grant No. 20306026), the National Science and Technology Major Project of New Drug, China (No. 2012ZX09103101-075), and the Industry-University-Research Institution Alliance for Microbial Medicine Technology Innovation and New Drug Development, China (No. 2010ZX090401-403) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mianbin Wu or Jianping Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, B., Wu, M., Lin, J. et al. Metabolic engineering strategies for improving xylitol production from hemicellulosic sugars. Biotechnol Lett 35, 1781–1789 (2013). https://doi.org/10.1007/s10529-013-1279-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-013-1279-2

Keywords

Navigation