Skip to main content
Log in

Metabolic engineering of Bacillus subtilis for enhanced production of acetoin

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Acetoin is widely used in food and other industries. A bdhA and acoA double-knockout strain of Bacillus subtilis produced acetoin at 0.72 mol/mol, a 16.4 % increased compared to the wild type. Subsequent overexpression of the alsSD operon enhanced the acetolactate synthase activity by 52 and 66 % in growth and stationary phases, respectively. However, deletion of pta gene caused little increase of acetoin production. For acetoin production by the final engineered strain, BSUW06, acetoin productivity was improved from 0.087 g/l h, using M9 medium plus 30 g glucose/l under micro-aerobic conditions, to 0.273 g/h l using LB medium plus 50 g glucose/l under aerobic conditions. In fermentor culture, BSUW06 produced acetoin up to 20 g/l.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Fradrich C, March A, Fiege K, Hartmann A, Jahn D, Hartig E (2011) The transcription factor AlsR binds and regulates the promoter of the alsSD operon responsible for acetoin formation in Bacillus subtilis. J Bacteriol 194:1110–1112

    Google Scholar 

  • Holtzclaw WD, Chapman LF (1975) Degradative acetolactate synthase of Bacillus subtilis: purification and properties. J Bacteriol 121:917–922

    PubMed  CAS  Google Scholar 

  • Huang M, Oppermann-Sanio FB, Steinbuchel A (1999) Biochemical and molecular characterization of the Bacillus subtilis acetoin catabolic pathway. J Bacteriol 181:3837–3841

    PubMed  CAS  Google Scholar 

  • Ji XJ, Huang H, Li S, Du J, Lian M (2007) Enhanced 2,3-butanediol production by altering the mixed acid fermentation pathway in Klebsiella oxytoca. Biotechnol Lett 30:731–734

    Article  PubMed  Google Scholar 

  • Liu YF, Zhang SL, Yong YC, Ji ZX, Ma X, Xu ZH, Chen SW (2011) Efficient production of acetoin by the newly isolated Bacillus licheniformis strain MEL09. Process Biochem 46:390–394

    Article  CAS  Google Scholar 

  • Moes J, Griot M, Keller J, Heinzle E, Dunn IJ, Bourne JR (1984) A microbial culture with oxygen-sensitive product distribution as a potential tool for characterizing bioreactor oxygen transport. Biotechnol Bioeng 27:482–489

    Article  Google Scholar 

  • Nicholson WL (2008) The Bacillus subtilis ydjL (bdhA) gene encodes acetoin reductase/2,3-butanediol dehydrogenase. Appl Environ Microbiol 74:6832–6838

    Article  PubMed  CAS  Google Scholar 

  • Renna MC, Najimudin N, Winik LR, Zahler SA (1993) Regulation of the Bacillus subtilis alsS, alsD, and alsR genes involved in post-exponential-phase production of acetoin. J Bacteriol 175:3863–3875

    PubMed  CAS  Google Scholar 

  • Silbersack J, Jürgen B, Hecker M, Schneidinger B, Schmuck R, Schweder T (2006) An acetoin-regulated expression system of Bacillus subtilis. Appl Microbiol Biotechnol 73:895–903

    Article  PubMed  CAS  Google Scholar 

  • Thanh TN, Jürgen B, Bauch M, Liebeke M, Lalk M, Ehrenreich A, Evers S, Maurer KH, Antelmann H, Ernst F, Homuth G, Hecker M, Schweder T (2010) Regulation of acetoin and 2,3-butanediol utilization in Bacillus licheniformis. Appl Microbiol Biotechnol 87:2227–2235

    Article  PubMed  CAS  Google Scholar 

  • Werpy T, Petersen G (2004) Top value added chemicals from biomass: Volume I: results of screening for potential candidates from sugars and synthesis gas. US Department of Energy

  • Xu P, Xiao Z, Du Y, Wei Z (2009) Acetoin high-yield Bacillus pumilus strain. US Patent Application 20090215152

  • Xu H, Jia S, Liu J (2011) Development of a mutant strain of Bacillus subtilis showing enhanced production of acetoin. Afr J Biotechnol 10:779–788

    Article  CAS  Google Scholar 

  • Yang YT, Peredelchuk M, Bennett GN, San KY (2000) Effect of variation of Klebsiella pneumoniae acetolactate synthase expression on metabolic flux redistribution in Escherichia coli. Biotechnol Bioeng 69:150–159

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Yang Y, Sun J, Shen Y, Wei D, Zhu J, Chu J (2010) Microbial production of 2,3-butanediol by a mutagenized strain of Serratia marcescens H30. Bioresour Technol 101:1961–1967

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Chen X, Chen T, Zhao X (2007) Enhancement of riboflavin production by overexpression of acetolactate synthase in a pta mutant of Bacillus subtilis. FEMS Microbiol Lett 266:224–230

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (NSFC-21176182), Natural Science Foundation of Tianjin (12JCYBJC12900), the Research Fund for the Doctoral Program of Higher Education (20100032120014) and the National 973 Project (2011CBA00804, 2012CB725203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Chen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, M., Fu, J., Zhang, X. et al. Metabolic engineering of Bacillus subtilis for enhanced production of acetoin. Biotechnol Lett 34, 1877–1885 (2012). https://doi.org/10.1007/s10529-012-0981-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-012-0981-9

Keywords

Navigation