Skip to main content

Advertisement

Log in

Comparison of the spores of Paenibacillus polymyxa prepared at different temperatures

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Paenibacillus polymyxa SQR-21, which is antagonistic against Fusarium oxysporum, is used as a biocontrol agent and, when mixed with organic substances for solid fermentation, produces a bioorganic fertilizer. The spores of P. polymyxa prepared at different temperatures were characterized with respect to the dipicolinic acid content, heat resistance, fatty acid composition and germination. Spores prepared at 37°C showed higher heat resistance than those prepared at 25 and 30°C. However, the germination rate was negatively correlated with the sporulation temperature. The maximum germination rate of the spores prepared at 25°C was 1.3-times higher than the spores prepared at 30°C. The sporulation temperature thus affects the resistance and germination properties of P. polymyxa spores. These results are useful for the production of improved bio-organic fertilizer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ash C, Priest FG, Collins MD (1994) Paenibacillus gen. nov. and Paenibacillus polymyxa comb. nov. In validation of the publication of new names and new combinations previously effectively published outside the IJSB, list no. 51. Int J Syst Bacteriol 44:852

    Article  Google Scholar 

  • Atluri S, Ragkousi K, Cortezzo DE, Setlow P (2006) Cooperativity between different nutrient receptors in germination of spores of Bacillus subtilis and reduction of this cooperativity by alterations in the GerB receptor. J Bacteriol 188:28–36

    Article  PubMed  CAS  Google Scholar 

  • Bagyan I, Noback M, Bron S, Paidhungat M, Setlow P (1998) Characterization of yhcN, a new forespore-specific gene of Bacillus subtilis. Gene 212:179–188

    Article  PubMed  CAS  Google Scholar 

  • Baweja RB, Zaman MS, Mattoo AR, Sharma K, Tripathi V, Aggarwal A, Dubey GP, Kurupati RK, Ganguli M, Chaudhury NK, Sen S, Das TK, Gade WN, Singh Y (2008) Properties of Bacillus anthracis spores prepared under various environmental conditions. Arch Microbiol 189:71–79

    Article  PubMed  CAS  Google Scholar 

  • Beatty PH, Jensen SE (2002) Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola. Can J Microbiol 48:159–169

    Article  PubMed  CAS  Google Scholar 

  • Black EP, Koziol-Dube K, Guan D, Wei J, Setlow B, Cortezzo DE, Hoover DG, Setlow P (2005) Factors influencing germination of Bacillus subtilis spores via activation of nutrient receptors by high pressure. Appl Environ Microbiol 71:5879–5887

    Article  PubMed  CAS  Google Scholar 

  • Casadei MA, Ingram R, Skinner RJ, Gaze JE (2000) Heat resistance of Paenibacillus polymyxa in relation to pH and acidulants. J Appl Microbiol 89:801–806

    Article  PubMed  CAS  Google Scholar 

  • Clements MO, Moir A (1998) Role of the gerI operon of Bacillus cereus 569 in the response of spores to germinants. J Bacteriol 180:6729–6735

    PubMed  CAS  Google Scholar 

  • Cortezzo DE, Setlow P (2005) Analysis of factors influencing the sensitivity of spores of Bacillus subtilis to DNA damaging chemicals. J Appl Microbiol 98:606–617

    Article  PubMed  CAS  Google Scholar 

  • De Wulf P, Soetaert W, Schwengers D, Vandamme EJ (1996) d-Glucose does not catabolite repress a transketolase deficient d-ribose producing Bacillus subtilis mutant strain. J Ind Microbiol 17:104–109

    Article  Google Scholar 

  • Forsgren E, Stevanovic J, Fries I (2008) Variability in germination and in temperature and storage resistance among Paenibacillus larvae genotype. Vet Microbiol 129:342–349

    Article  PubMed  CAS  Google Scholar 

  • Gerhardt P, Marquis RE (1989) Spore thermoresistance mechanisms. In: Smith I, Slepecky RA, Setlow P (eds) Regulation of Prokaryotic Development. American Society for Microbiology Washington DC, pp 43–63

  • Gould GW (1969) Germination. In: Gould GW, Hurst A (eds) The Bacterial Spore. Academic Press, London, pp 397–444

  • Gounina-Allouane R, Broussolle V, Carlin F (2008) Influence of the sporulation temperature on the impact of the nutrients inosine and l-alanine on Bacillus cereus spore germination. Food Microbiol 25:202–206

    Article  PubMed  CAS  Google Scholar 

  • Hederstedt L (1993) In Sonenshein AL, Hoch JA and Losick R (eds) Bacillus subtilis and other gram-positive bacteria: Biochemistry, Physiology and Molecular Genetics ASM, Washington, DC, pp 181–197

  • Huo ZH, Yang XM, Raza W, Huang QW, Xu YC, Shen QR (2010) Investigation of factors influencing spore germination of Paenibacillus polymyxa ACCC10252 and SQR-21. Appl Microbiol Biotechnol 87:527–536

    Article  PubMed  CAS  Google Scholar 

  • Janssen FW, Lund AJ, Anderson LE (1958) Calorimetric assay for dipicolinic acid in bacterial spores. Science 127:26–27

    Article  PubMed  CAS  Google Scholar 

  • Juhee A, Balasubramaniam VM (2007) Physiological response of Bacillus amyloliquefaciens spores to high press. J Microbiol Biotechnol 17:524–529

    Google Scholar 

  • Mansilla MC, Cybulski LE, Albanesi D, de Mendoza D (2004) Control of membrane lipid fluidity by molecular thermosensors. J Bacteriol 186:6681–6688

    Article  PubMed  CAS  Google Scholar 

  • Marquis RE, Shin SY (1994) Mineralization and responses of bacterial spores to heat and oxidative agents. FEMS Microbiol Rev 14:375–380

    Article  PubMed  CAS  Google Scholar 

  • Marquis RE, Sim J, Shin SY (1994) Molecular mechanisms of resistance to heat and oxidative damage. J Appl Bacteriol 76:40S–48S

    Article  Google Scholar 

  • Melly E, Genest PC, Gilmore ME, Little S, Popham DL, Driks A, Setlow P (2002) Analysis of the properties of spores of Bacillus subtilis prepared at different temperatures. J Appl Microbiol 92:1105–1115

    Article  PubMed  CAS  Google Scholar 

  • Moir A (1990) The genetics of bacterial spore germination. Annu Rev Microbiol 44:531–553

    Article  PubMed  CAS  Google Scholar 

  • Moir A (2006) How do spores germinate? J Appl Microbiol 101:526–530

    Article  PubMed  CAS  Google Scholar 

  • Nicholson WL (2002) Roles of Bacillus endospores in the environment. Cell Mol Life Sci 59:410–416

    Article  PubMed  CAS  Google Scholar 

  • Nicholson WL, Fajardo-Cavazos P (1997) DNA repair and the ultraviolet radiation resistance of bacterial spores: from the laboratory to the environment. Recent Res Dev Microbiol 1:125–140

    Google Scholar 

  • Nicholson WL, Setlow P (1990) Sporulation, germination and outgrowth. In: Harwood CR, Cutting SM (eds) Molecular biological methods for Bacillus, Chichester, pp 391–450

  • Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P (2000) Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 64:548–572

    Article  PubMed  CAS  Google Scholar 

  • Paidhungat M, Seltow B, Driks A, Setlow P (2000) Characterization of spores of Bacillus subtilis which lack dipicolinic acid. J Bacteriol 182:5505–5512

    Article  PubMed  CAS  Google Scholar 

  • Rose R, Setlow B, Monroe A, Mallozzi M, Driks A, Setlow P (2007) Comparison of the properties of Bacillus subtilis spores made in liquid or on agar plates. J Appl Microbiol 103:691–699

    Article  PubMed  CAS  Google Scholar 

  • Selim S, Negrel S, Goveraets C, Gianinazzi S, Tuinen V (2005) Isolation and partial characterization of antagonistic peptides produced by Paenibacillus sp. strains B2 isolated from the sorghum mycorrhizosphere. Appl Environ Microbiol 71:6501–6507

    Article  PubMed  CAS  Google Scholar 

  • Setlow P (2000) Resistance of bacterial spores. In Storz G and Hengge-Aronis R (eds) Bacterial stress responses American Society for Microbiology. Washington, DC, pp 217–230

  • Setlow P (2003) Spore germination. Curr Opin Microbiol 6:550–556

    Article  PubMed  CAS  Google Scholar 

  • Setlow B, Loshon CA, Genest PC, Cowan AE, Setlow C, Setlow P (2002) Mechanisms of killing spores of Bacillus subtilis by acid, alkali and ethanol. J Appl Microbiol 92:362–375

    Article  PubMed  CAS  Google Scholar 

  • Setlow B, Cowan AE, Setlow P (2003) Germination of spores of Bacillus subtilis with dodecylamine. J Appl Microbiol 95:637–648

    Article  PubMed  CAS  Google Scholar 

  • Timmusk S, Grantcharova N, Gerhart WH (2005) Paenibacillus polymyxa invades plant roots and forms biofilms. Appl Environ Microbiol 71:7292–7300

    Article  PubMed  CAS  Google Scholar 

  • Warriner K, Waites WM (1999) Enhanced sporulation in Bacillus subtilis grown on medium containing glucose: ribose. Lett Appl Microbiol 29:97–102

    Article  CAS  Google Scholar 

  • Wax R, Freese E (1968) Initiation of the germination of Bacillus subtilis spores by a combination of compounds in place of l-alanine. J Bacteriol 95:433–438

    PubMed  CAS  Google Scholar 

  • Zhang SS, Raza W, Shen Q (2008) Control of Fusarium wilt disease of cucumber plants with the application of a bioorganic fertilizer. Biol Fertil Soils 44:1073–1080

    Article  Google Scholar 

Download references

Acknowledgments

This research work was financially supported by Chinese Ministry of Agriculture (201103004), Nature Science Foundation of China (40871126) and the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions, RZ was supported by Chinese Ministry of Science and Technology (2011BAD11B03-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruifu Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huo, Z., Zhang, N., Raza, W. et al. Comparison of the spores of Paenibacillus polymyxa prepared at different temperatures. Biotechnol Lett 34, 925–933 (2012). https://doi.org/10.1007/s10529-012-0853-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-012-0853-3

Keywords

Navigation