Skip to main content
Log in

Properties of Bacillus anthracis spores prepared under various environmental conditions

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Bacillus anthracis makes highly stable, heat-resistant spores which remain viable for decades. Effect of various stress conditions on sporulation in B. anthracis was studied in nutrient-deprived and sporulation medium adjusted to various pH and temperatures. The results revealed that sporulation efficiency was dependent on conditions prevailing during sporulation. Sporulation occurred earlier in culture sporulating at alkaline pH or in PBS than control. Spores formed in PBS were highly sensitive towards spore denaturants whereas, those formed at 45°C were highly resistant. The decimal reduction time (D-10 time) of the spores formed at 45°C by wet heat, 2 M HCl, 2 M NaOH and 2 M H2O2 was higher than the respective D-10 time for the spores formed in PBS. The dipicolinic acid (DPA) content and germination efficiency was highest in spores formed at 45°C. Since DPA is related to spore sensitivity towards heat and chemicals, the increased DPA content of spores prepared at 45°C may be responsible for increased resistance to wet heat and other denaturants. The size of spores formed at 45°C was smallest amongst all. The study reveals that temperature, pH and nutrient availability during sporulation affect properties of B. anthracis spores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amiteye S, Kobayashi K, Imamura D, Hosoya S, Ogasawara N, Sato T (2003) Bacillus subtilis diacylglycerol kinase (DgkA) enhances efficient sporulation. J Bacteriol 185:5306–5309

    Article  PubMed  CAS  Google Scholar 

  • Byrer DE, Rainey FA, Wiegel J (2000) Novel strains of Moorella thermoacetica form unusually heat-resistant spores. Arch Microbiol 174:334–339

    Article  PubMed  CAS  Google Scholar 

  • Douki T, Setlow B, Setlow P (2005) Photosensitization of DNA by dipicolinic acid, a major component of spores of Bacillus species. Photochem Photobiol Sci 4:591–597

    Article  PubMed  CAS  Google Scholar 

  • Driks A (1999) Bacillus subtilis spore coat. Microbiol Mol Biol Rev 63:1–20

    PubMed  CAS  Google Scholar 

  • Driks A (2003) The dynamic spore. Proc Natl Acad Sci USA 100:3007–3009

    Article  PubMed  CAS  Google Scholar 

  • Gerhardt P, Marquis RE (1989) Spore thermoresistance mechanisms. In: Smith I, Slepecky RA, Setlow P (eds) Regulation of prokaryotic development. ASM, Washington, DC, pp 43–63

    Google Scholar 

  • Gustavsson N, Diez A, Nystrom T (2002) The universal stress protein paralogues of Escherichia coli are co-ordinately regulated and co-operate in the defence against DNA damage. Mol Microbiol 43:107–117

    Article  PubMed  CAS  Google Scholar 

  • Helfinstine SL, Vargas-Aburto C, Uribe RM, Woolverton CJ (2005) Inactivation of Bacillus endospores in envelopes by electron beam irradiation. Appl Environ Microbiol 71:7029–7032

    Article  PubMed  CAS  Google Scholar 

  • Ireland JA, Hanna PC (2002) Amino acid- and purine ribonucleoside-induced germination of Bacillus anthracis Delta-Sterne endospores: gerS mediates responses to aromatic ring structures. J Bacteriol 184:1296–1303

    Article  PubMed  CAS  Google Scholar 

  • Klein F, Walker JS, Fitzpatrick DF, Lincoln RE, Mahlandt BG, Jones WI Jr, Dobbs JP, Hendrix KJ (1966) Pathophysiology of anthrax. J Infect Dis 116:123–138

    PubMed  CAS  Google Scholar 

  • Liu H, Bergman NH, Thomasson B, Shallom S, Hazen A, Crossno J, Rasko DA, Ravel J, Read TD, Peterson SN, Yates J, Hanna PC (2004) Formation and composition of Bacillus anthracis endospores. J Bacteriol 186:164–178

    Article  PubMed  CAS  Google Scholar 

  • Margosch D, Ehrmann MA, Buckow R, Heinz V, Vogel RF, Ganzle MG (2006) High-pressure-mediated survival of Clostridium botulinum and Bacillus amyloliquefaciens endospores at high temperature. Appl Environ Microbiol 72:3476–3481

    Article  PubMed  CAS  Google Scholar 

  • Marquis RE, Shin SY (1994) Mineralization and responses of bacterial spores to heat and oxidative agents. FEMS Microbiol Rev 14:375–379

    Article  PubMed  CAS  Google Scholar 

  • Marquis RE, Sim J, Shin SY (1994) Molecular mechanisms of resistance to heat and oxidative damage. Soc Appl Bacteriol Symp Ser 23:40S–48S

    PubMed  CAS  Google Scholar 

  • McDougald D, Gong L, Srinivasan S, Hild E, Thompson L, Takayama K, Rice SA, Kjelleberg S (2002) Defences against oxidative stress during starvation in bacteria. Antonie Van Leeuwenhoek 81:3–13

    Article  PubMed  CAS  Google Scholar 

  • Melly E, Genest PC, Gilmore ME, Little S, Popham DL, Driks A, Setlow P (2002) Analysis of the properties of spores of Bacillus subtilis prepared at different temperatures. J Appl Microbiol 92:1105–1115

    Article  PubMed  CAS  Google Scholar 

  • Movahedi S, Waites W (2000) A two-dimensional protein gel electrophoresis study of the heat stress response of Bacillus subtilis cells during sporulation. J Bacteriol 182:4758–4763

    Article  PubMed  CAS  Google Scholar 

  • Nakata HM (1963) Effect of pH on intermediates produced during growth and sporulation of Bacillus cereus. J Bacteriol 86:577–581

    PubMed  CAS  Google Scholar 

  • Nicholson WL, Galeano B (2003) UV resistance of Bacillus anthracis spores revisited: validation of Bacillus subtilis spores as UV surrogates for spores of B. anthracis Sterne. Appl Environ Microbiol 69:1327–1330

    Article  PubMed  CAS  Google Scholar 

  • Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P (2000) Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 64:548–572

    Article  PubMed  CAS  Google Scholar 

  • Paidhunghat M, Setlow B, Driks A, Setlow P (2000) Characterization of spores of Bacillus subtilis which lack dipicolinic acid. J Bacteriol 182:5505–5512

    Article  Google Scholar 

  • Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567

    Article  PubMed  CAS  Google Scholar 

  • Powell JF (1953) Isolation of dipicolinic acid (pyridine-2:6-dicarboxylic acid) from spores of Bacillus megaterium. Biochem J 54:210–211

    PubMed  CAS  Google Scholar 

  • Rice EW, Adcock NJ, Sivaganesan M, Rose LJ (2005) Inactivation of spores of Bacillus anthracis Sterne, Bacillus cereus, and Bacillus thuringiensis subsp. israelensis by chlorination. Appl Environ Microbiol 71:5587–5589

    Article  PubMed  CAS  Google Scholar 

  • Russell AD (1982) The destruction of bacterial spores. Academic, London

    Google Scholar 

  • Sedlak M, Vinter V, Adamec J, Vohradsky J, Voburka Z, Chaloupka J (1993) Heat shock applied early in sporulation affects heat resistance of Bacillus megaterium spores. J Bacteriol 175:8049–8052

    PubMed  CAS  Google Scholar 

  • Setlow B, Loshon CA, Genest PC, Cowan AE, Setlow C, Setlow P (2002) Mechanisms of killing spores of Bacillus subtilis by acid, alkali and ethanol. J Appl Microbiol 92:362–375

    Article  PubMed  CAS  Google Scholar 

  • Slieman TA, Nicholson WL (2001) Role of dipicolinic acid in survival of Bacillus subtilis spores exposed to artificial and solar UV radiation. Appl Environ Microbiol 67:1274–1279

    Article  PubMed  CAS  Google Scholar 

  • Suzuki JB, Booth R, Grecz N (1971) In vivo and in vitro release of Ca45 from spores of Clostridium botulinum type A as further evidence for spore germination. Res Commun Chem Pathol Pharmacol 2:16–23

    PubMed  CAS  Google Scholar 

  • Topanurak S, Sinchaikul S, Phutrakul S, Sookkheo B, Chen ST (2005) Proteomics viewed on stress response of thermophilic bacterium Bacillus stearothermophilus TLS33. Proteomics 14:3722–3730

    Article  CAS  Google Scholar 

  • Van Ness GB (1971) Ecology of anthrax. Science 172:1303–1317

    Article  PubMed  Google Scholar 

  • Weiner MA, Hanna PC (2003) Macrophage-mediated germination of Bacillus anthracis endospores requires the gerH operon. Infect Immun 71:3954–3959

    Article  PubMed  CAS  Google Scholar 

  • Yazdany S, Lashkari KB (1975) Effect of pH on sporulation of Bacillus stearothermophilus. Appl Microbiol 30:1–3

    PubMed  CAS  Google Scholar 

  • Zaman MS, Goyal A, Dubey GP, Gupta PK, Chandra H, Das TK, Ganguli M, Singh Y (2005) Imaging and analysis of germination of Bacillus anthracis spores. Microsc Res Tech 66:307–311

    Article  PubMed  Google Scholar 

  • Zhang W, Chait BT (2000) ProFound: an expert system for protein identification using mass spectrometric peptide mapping information. Anal Chem 72:2482–2489

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Philip. C. Hanna (University of Michigan) for his suggestions during the course of study and Ms Prabha Sarangi and Ribhu Nayar for technical support. Financial support by Council of Scientific and Industrial Research (SMM 0003) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yogendra Singh.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baweja, R.B., Zaman, M.S., Mattoo, A.R. et al. Properties of Bacillus anthracis spores prepared under various environmental conditions. Arch Microbiol 189, 71–79 (2008). https://doi.org/10.1007/s00203-007-0295-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-007-0295-9

Keywords

Navigation