Skip to main content
Log in

Riboflavin production by Ashbya gossypii

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Riboflavin is an important nutrient for humans and animals. Industrial production has shifted completely from chemical synthesis to microbial fermentation. First generation riboflavin production was improved by a combination of traditional mutagenesis and genetic engineering, and isolated strains have been used in industry. As the DNA genome of riboflavin producers has the potential to reveal new technologies, DNA microarray, proteomic and metabolic analyses have been applied to the analysis of hyper-riboflavin producers. In this review, disparity mutagenesis technology is introduced as a means of improving riboflavin production by Ashbya gossypii. DNA microarray, proteomic and metabolic analyses of this high riboflavin producer are discussed, as well as recent riboflavin production trends, costs and future improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abe H, Fujita Y, Chiba Y, Jigami Y, Nakayama K (2009a) Upregulation of genes involved in gluconeogenesis and the glyoxylate cycle suppressed the drug sensitivity of an N-glycosylation-deficient Saccharomyces cerevisiae mutant. Biosci Biotechnol Biochem 73:1398–1403

    Article  PubMed  CAS  Google Scholar 

  • Abe H, Fujita Y, Takaoka Y, Kurita E, Yanos S, Tanaka N, Nakayama K (2009b) Ethanol-tolerant Saccharomyces cerevisiae strains isolated under selective condition by overexpression of a proofreading-deficient DNA polymerase delta. J Biosci Bioeng 108:199–204

    Article  PubMed  CAS  Google Scholar 

  • Abe H, Takaoka Y, Chiba Y, Sato N, Ohgiya S, Itadani A, Hirashima M, Shimoda C, Jigami Y, Nakayama K (2009c) Development of valuable yeast strains using a novel mutagenesis technique for the effective production of therapeutic glycoprotein. Glycobiology 19:428–436

    Article  PubMed  CAS  Google Scholar 

  • Aoki K, Furusawa M (2001) Promotion of evolution by intracellular coexistence of mutator and normal DNA polymerases. J Theor Biol 209:213–222

    Article  PubMed  CAS  Google Scholar 

  • Demain AL (1972) Riboflavin oversynthesis. Annu Rev Microbiol 26:369–388

    Article  PubMed  CAS  Google Scholar 

  • Dietrich FS, Voegelli S, Brachat S, Lerch A, Gates K, Steiner S, Mohr C, Pöhlmann R, Luedi P, Choi S, Wing RA, Flavier A, Graffney TD, Philippsen P (2004) The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome. Science 304:304–307

    Article  PubMed  CAS  Google Scholar 

  • Duan YX, Chen T, Chen X, Zhao XM (2010) Overexpression of glucose-6-phpsphate dehydrogenase enhances riboflavin production in Bacullus subtilis. Appl Microbiol Biotechnol 85:1907–1914

    Article  PubMed  CAS  Google Scholar 

  • Föster C, Santos M, Ruffert S, Krämer R, Revuelta JL (1999) Physiological consequence of disruption of the VMA1 gene in the riboflavin overproducer Ashbya gossypii. J Biol Chem 274:9442–9448

    Article  Google Scholar 

  • Furusawa M, Doi H (1992) Promotion of evolution: disparity in the frequency of strand-specific misreading between the lagging and leading DNA strands enhances disproportionate accumulation of mutations. J Theor Biol 157:127–133

    Article  PubMed  CAS  Google Scholar 

  • Furusawa M, Doi H (1998) Asymmetrical DNA replication promotes evolution: disparity theory of evolution. Genetica 102(103):333–347

    Article  PubMed  Google Scholar 

  • Jiménez A, Santos MA, Pompejus M, Revuelta JL (2005) Metabolic engineering of the purine pathway for riboflavin production in Ashbya gossypii. Appl Environ Microbiol 71:5743–5751

    Article  PubMed  Google Scholar 

  • Jiménez A, Santos MA, Revuelta JL (2008) Phosphoribosyl pyrophosphate synthase activity affects growth and riboflavin production in Ashbya gossypii. BMC Biotechnol 8:67

    Article  PubMed  Google Scholar 

  • Karos M, Vilariño C, Bollschweiler C, Revuelta JL (2004) A genome-wide transcription analysis of a fungal riboflavin overproducer. J Biotechnol 113:69–76

    Article  PubMed  CAS  Google Scholar 

  • Kato T, Park EY (2006) Expression of alanine: glyoxylate aminotransferase gene from Saccharomyces cerevisiae in Ashbya gossypii. Appl Microbiol Biotechnol 71:46–52

    Article  PubMed  CAS  Google Scholar 

  • Mateos L, Jiménez A, Revuelta J, Santos M (2006) Purine biosynthesis, riboflavin production, and trophic phase span are controlled by a Myb-related transcription factor in the fungus Ashbya gossypii. Appl Environ Microbiol 72:5052–5060

    Article  PubMed  CAS  Google Scholar 

  • Ming H, Lara Pizarro AV, Park EY (2003) Application of waste activated bleaching earth containing rapeseed oil on riboflavin production in the culture of Ashbya gossypii. Biotechnol Prog 19:410–417

    Article  PubMed  CAS  Google Scholar 

  • Monschau N, Sahm H, Stahmann KP (1998) Threonine aldolase overexpression plus threonine supplementation enhanced riboflavin production in Ashbya gossypii. Appl Environ Microbiol 64:4283–4290

    PubMed  CAS  Google Scholar 

  • Park EY, Zhang JH, Tajima S, Dwiarti L (2007) Isolation of Ashbya gossypii mutant for an improved riboflavin production targeting for biorefinery technology. J Appl Microbiol 103:468–476

    Article  PubMed  CAS  Google Scholar 

  • Park EY, Ito Y, Nariyama M, Sugimoto T, Lies D, Kato T (2011) The improvement of riboflavin production in Ashbya gossypii via disparity mutagenesis and DNA microarray analysis. Appl Microbiol Biotechnol 91:1315–1326

    Article  PubMed  CAS  Google Scholar 

  • Plaut GWE (1954) Biosynthesis of riboflavin I. Incorporation of 14C-labelled compounds into rings B and C. J Biol Chem 208:513–520

    PubMed  CAS  Google Scholar 

  • Schlösser T, Schmidt G, Stahmann KP (2001) Transcriptional regulation of 3,4-dihydroxy-2-butanone 4-phosphate synthase. Microbiology 147:3377–3386

    PubMed  Google Scholar 

  • Schlüpen C, Santos MA, Weber U, De Graaf A, Revuelta JL, Stahmann KP (2003) Disruption of the SHM2 gene, encoding one of two serine hydroxymethyltransferase isozymes, reduces the flux from glycine to serine in Ashbya gossypii. Biochem J 369:263–273

    Article  PubMed  Google Scholar 

  • Schmidt G, Stahmann KP, Kaesler B, Sahm H (1996a) Correlation of isocitrate lyase activity and riboflavin formation in the riboflavin overproducer Ashbya gossypii. Microbiology 142:419–426

    Article  CAS  Google Scholar 

  • Schmidt G, Stahmann KP, Sahm H (1996b) Inhibition of purified isocitrate lyase identified itaconate and oxalate as potential antimetabolites for the riboflavin overproducer Ashbya gossypii. Microbiology 142:411–417

    Article  CAS  Google Scholar 

  • Shimoda C, Itadani A, Sugino A, Furusawa M (2006) Isolation of thermotolerant mutants by using proofreading-deficient DNA polymerase δ as an effective mutator in Saccharomyces cerevisiae. Genes Genet Syst 81:391–397

    Article  PubMed  CAS  Google Scholar 

  • Stahmann KP, Revuelta JL, Seulberger H (2000) Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production. Appl Microbiol Biotechnol 53:509–516

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto T, Morimoto A, Nariyama M, Kato T, Park EY (2010) Isolation of an oxalate-resistant Ashbya gossypii strain and its improved riboflavin production. J Ind Microbiol Biotechnol 37:57–64

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enoch Y. Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kato, T., Park, E.Y. Riboflavin production by Ashbya gossypii . Biotechnol Lett 34, 611–618 (2012). https://doi.org/10.1007/s10529-011-0833-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-011-0833-z

Keywords

Navigation