Skip to main content

Advertisement

Log in

MC3T3-E1 cell differentiation and in vivo bone formation induced by phosphoserine

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Bone formation induced by phosphoserine was investigated in vitro and in vivo using MC3T3-E1 cells and a rabbit calvarial osseous defect model. MC3T3-E1 cells supplemented by phosphoserine displayed two-fold higher alkaline phosphatase activity and mineralization nodule formation, and calvarial defects treated with phosphoserine showed statistically significant new bone formation compared with the control (P < 0.05).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aebli N, Stich H, Schawalder P, Theis JC, Krebs J (2005) Effects of bone morphogenetic protein-2 and hyaluronic acid on the osseointegration of hydroxyapatite-coated implants: an experimental study in sheep. J Biomed Mater Res A 73:295–302

    PubMed  Google Scholar 

  • Appaji Rao N, Ambili M, Jala VR, Subramanya HS, Savithri HS (2003) Structure–function relationship in serine hydroxymethyltransferase. Biochim Biophys Acta 1647:24–29

    PubMed  CAS  Google Scholar 

  • Arnander C, Westermark A, Veltheim R, Docherty-Skogh AC, Hilborn J, Engstrand T (2006) Three-dimensional technology and bone morphogenetic protein in frontal bone reconstruction. J Craniofac Surg 17:275–279

    Article  PubMed  Google Scholar 

  • Beck GR Jr, Moran E, Knecht N (2003) Inorganic phosphate regulates multiple genes during osteoblast differentiation, including Nrf2. Exp Cell Res 288:288–300

    Article  PubMed  CAS  Google Scholar 

  • de Koning TJ (2006) Treatment with amino acids in serine deficiency disorders. J Inherit Metab Dis 29:347–351

    Article  PubMed  Google Scholar 

  • Ganss B, Kim RH, Sodek J (1999) Bone sialoprotein. Crit Rev Oral Biol Med 10:79–98

    Article  PubMed  CAS  Google Scholar 

  • Itoh S, Matubara M, Kawauchi T, Nakamura H, Yukitake S, Ichinose S, Shinomiya K (2001) Enhancement of bone ingrowth in a titanium fiber mesh implant by rhBMP-2 and hyaluronic acid. J Mater Sci Mater Med 12:575–581

    Article  PubMed  CAS  Google Scholar 

  • Knepper-Nicolai B, Reinstorf A, Hofinger I, Flade K, Wenz R, Pompe W (2002) Influence of osteocalcin and collagen I on the mechanical and biological properties of Biocement D. Biomol Eng 19:227–231

    Article  PubMed  CAS  Google Scholar 

  • Li B, Chen X, Guo B, Wang X, Fan H, Zhang X (2009) Fabrication and cellular biocompatibility of porous carbonated biphasic calcium phosphate ceramics with a nanostructure. Acta Biomater 5:134–143

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Ding J, Mante FK, Wunder SL, Baran GR (2002) The role of surface functional groups in calcium phosphate nucleation on titanium foil: a self-assembled monolayer technique. Biomaterials 23:3103–3111

    Article  PubMed  CAS  Google Scholar 

  • Mai R, Lux R, Proff P, Lauer G, Pradel W, Leonhardt H, Reinstorf A, Gelinsky M, Jung R, Eckelt U, Gedrange T, Stadlinger B (2008) O-phospho-l-serine: a modulator of bone healing in calcium-phosphate cements. Biomed Tech 53:229–233

    Article  CAS  Google Scholar 

  • Offer L, Veigel B, Pavlidis T, Heiss C, Gelinsky M, Reistorf A, Wenisch S, Lips KS, Schnettler R (2011) Phosphoserine-modified calcium phosphate cements: bioresorption and substitution. J Tissue Eng Regen Med 5:11–19

    Article  PubMed  CAS  Google Scholar 

  • Orimo H, Shimada T (2008) The role of tissue-nonspecific alkaline phosphatase in the phosphate-induced activation of alkaline phosphatase and mineralization in SaOS-2 human osteoblast-like cells. Mol Cell Biochem 315:51–60

    Article  PubMed  CAS  Google Scholar 

  • Park JW, Kim YJ, Jang JH, Song H (2010a) Osteoblast response to magnesium ion-incorporated nanoporous titanium oxide surfaces. Clin Oral Implant Res 21:1278–1287

    Article  Google Scholar 

  • Park JW, Kim ES, Jang JH, Suh JY, Park KG, Hanawa T (2010b) Healing of rabbit calvarial bone defects using biphasic calcium phosphate ceramics made of submicron-sized grains with a hierarchical pore structure. Clin Oral Implant Res 21:268–276

    Article  Google Scholar 

  • Reinstorf A, Ruhnow M, Gelinsky M, Pompe W, Hempel U, Wenzel KW, Simon P (2004) Phosphoserine—a convenient compound for modification of calcium phosphate bone cement collagen composites. J Mater Sci Mater Med 15:451–455

    Article  PubMed  CAS  Google Scholar 

  • Schaeren S, Jaquiery C, Wolf F, Papadimitropoulos A, Barbero A, Schultz-Thater E, Heberer M, Martin I (2010) Effect of bone sialoprotein coating of ceramic and synthetic polymer materials on in vitro osteogenic cell differentiation and in vivo bone formation. J Biomed Mater Res A 92:1461–1467

    PubMed  Google Scholar 

  • Schneiders W, Reinstorf A, Pompe W, Grass R, Biewener A, Holch M, Zwipp H, Rammelt S (2007) Effect of modification of hydroxyapatite/collagen composites with sodium citrate, phosphoserine, phosphoserine/RGD-peptide and calcium carbonate on bone remodelling. Bone 40:1048–1059

    Article  PubMed  CAS  Google Scholar 

  • Sodek J, Ganss B, McKee MD (2000) Osteopontin. Crit Rev Oral Biol Med 11:279–303

    Article  PubMed  CAS  Google Scholar 

  • Tejero R, Bierbaum S, Douglas T, Reinstorf A, Worch H, Scharnweber D (2010) Glucuronic acid and phosphoserine act as mineralization mediator of collagen I based biomimetic substrates. J Mater Sci Mater Med 21:407–418

    Article  PubMed  CAS  Google Scholar 

  • Vater C, Lode A, Bernhardt A, Reinstorf A, Heinemann C, Gelinsky M (2010) Influence of different modifications of a calcium phosphate bone cement on adhesion, proliferation, and osteogenic differentiation of human bone marrow stromal cells. J Biomed Mater Res A 92:1452–1460

    PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported by a grant of the Korea Healthcare Technology R&D Project, Ministry for Health, Welfare & Family Affairs, Republic of Korea (A090350).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Woo Park.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 65 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, JW., Kim, YJ., Jang, JH. et al. MC3T3-E1 cell differentiation and in vivo bone formation induced by phosphoserine. Biotechnol Lett 33, 1473–1480 (2011). https://doi.org/10.1007/s10529-011-0565-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-011-0565-0

Keywords

Navigation