Skip to main content
Log in

The Neuropeptide Spexin Promotes the Osteoblast Differentiation of MC3T3-E1 Cells via the MEK/ERK Pathway and Bone Regeneration in a Mouse Calvarial Defect Model

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

BACKGROUND:

The neural regulation of bone regeneration has emerged recently. Spexin (SPX) is a novel neuropeptide and regulates multiple biological functions. However, the effects of SPX on osteogenic differentiation need to be further investigated. Therefore, the aim of this study is to investigate the effects of SPX on osteogenic differentiation, possible underlying mechanisms, and bone regeneration.

METHODS:

In this study, MC3T3-E1 cells were treated with various concentrations of SPX. Cell proliferation, osteogenic differentiation marker expressions, alkaline phosphatase (ALP) activity, and mineralization were evaluated using the CCK-8 assay, reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR), ALP staining, and alizarin red S staining, respectively. To determine the underlying molecular mechanism of SPX, the phosphorylation levels of signaling molecules were examined via western blot analysis. Moreover, in vivo bone regeneration by SPX (0.5 and 1 µg/µl) was evaluated in a calvarial defect model. New bone formation was analyzed using micro-computed tomography (micro-CT) and histology.

RESULTS:

The results indicated that cell proliferation was not affected by SPX. However, SPX significantly increased ALP activity, mineralization, and the expression of genes for osteogenic differentiation markers, including runt-related transcription factor 2 (Runx2), Alp, collagen alpha-1(I) chain (Col1a1), osteocalcin (Oc), and bone sialoprotein (Bsp). In contrast, SPX downregulated the expression of ectonucleotide pyrophosphatase/phosphodiesterase 1 (Enpp1). Moreover, SPX upregulated phosphorylated mitogen-activated protein kinase kinase (MEK1/2) and extracellular signal-regulated kinase (ERK1/2). In vivo studies, micro-CT and histologic analysis revealed that SPX markedly increased a new bone formation.

CONCLUSION:

Overall, these results demonstrated that SPX stimulated osteogenic differentiation in vitro and increased in vivo bone regeneration via the MEK/ERK pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kosaras B, Jakubowski M, Kainz V, Burstein R. Sensory innervation of the calvarial bones of the mouse. J Comp Neurol. 2009;515:331–48.

    PubMed  PubMed Central  Google Scholar 

  2. Herskovits MS, Hallas BH, Singh IJ. Study of sympathetic innervation of cranial bones by axonal transport of horseradish peroxidase in the rat: preliminary findings. Acta Anat (Basel). 1993;147:178–83.

    Article  CAS  Google Scholar 

  3. Chartier SR, Thompson ML, Longo G, Fealk MN, Majuta LA, Mantyh PW. Exuberant sprouting of sensory and sympathetic nerve fibers in nonhealed bone fractures and the generation and maintenance of chronic skeletal pain. Pain. 2014;155:2323–36.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gu XC, Zhang XB, Hu B, Zi Y, Li M. Neuropeptide Y accelerates post-fracture bone healing by promoting osteogenesis of mesenchymal stem cells. Neuropeptides. 2016;60:61–6.

    Article  CAS  PubMed  Google Scholar 

  5. Ballica R, Valentijn K, Khachatryan A, Guerder S, Kapadia S, Gundberg C, et al. Targeted expression of calcitonin gene-related peptide to osteoblasts increases bone density in mice. J Bone Miner Res. 1999;14:1067–74.

    Article  CAS  PubMed  Google Scholar 

  6. Noh SS, Bhang SH, La WG, Lee S, Shin JY, Ma YJ, et al. A dual delivery of substance P and bone morphogenetic protein-2 for mesenchymal stem cell recruitment and bone regeneration. Tissue Eng Part A. 2015;21:1275–87.

    Article  CAS  PubMed  Google Scholar 

  7. Shi L, Feng L, Zhu ML, Yang ZM, Wu TY, Xu J, et al. Vasoactive intestinal peptide stimulates bone marrow-mesenchymal stem cells osteogenesis differentiation by activating Wnt/beta-catenin signaling pathway and promotes rat skull defect repair. Stem Cells Dev. 2020;29:655–66.

    Article  CAS  PubMed  Google Scholar 

  8. Assefa F, Lim J, Kim JA, Ihn HJ, Lim S, Nam SH, et al. Secretoneurin, a neuropeptide, enhances bone regeneration in a mouse calvarial bone defect model. Tissue Eng Regen Med. 2021;18:315–24.

    Article  CAS  PubMed  Google Scholar 

  9. Mirabeau O, Perlas E, Severini C, Audero E, Gascuel O, Possenti R, et al. Identification of novel peptide hormones in the human proteome by hidden Markov model screening. Genome Res. 2007;17:320–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wan B, Wang XR, Zhou YB, Zhang X, Huo K, Han ZG. C12ORF39, a novel secreted protein with a typical amidation processing signal. Biosci Rep. 2009;30:1–10.

    Article  PubMed  Google Scholar 

  11. Porzionato A, Rucinski M, Macchi V, Stecco C, Malendowicz LK, De Caro R. Spexin expression in normal rat tissues. J Histochem Cytochem. 2010;58:825–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kim DK, Yun S, Son GH, Hwang JI, Park CR, Kim JI, et al. Coevolution of the spexin/galanin/kisspeptin family: Spexin activates galanin receptor type II and III. Endocrinology. 2014;155:1864–73.

    Article  PubMed  Google Scholar 

  13. Waters SM, Krause JE. Distribution of galanin-1, -2 and -3 receptor messenger RNAs in central and peripheral rat tissues. Neuroscience. 2000;95:265–71.

    Article  CAS  PubMed  Google Scholar 

  14. Lin CY, Zhang M, Huang T, Yang LL, Fu HB, Zhao L, et al. Spexin enhances bowel movement through activating L-type voltage-dependent calcium channel via galanin receptor 2 in mice. Sci Rep. 2015;5:12095.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rucinski M, Porzionato A, Ziolkowska A, Szyszka M, Macchi V, De Caro R, et al. Expression of the spexin gene in the rat adrenal gland and evidences suggesting that spexin inhibits adrenocortical cell proliferation. Peptides. 2010;31:676–82.

    Article  CAS  PubMed  Google Scholar 

  16. Toll L, Khroyan TV, Sonmez K, Ozawa A, Lindberg I, McLaughlin JP, et al. Peptides derived from the prohormone proNPQ/spexin are potent central modulators of cardiovascular and renal function and nociception. FASEB J. 2012;26:947–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lv SY, Cui B, Yang Y, Du H, Zhang X, Zhou Y, et al. Spexin/NPQ induces FBJ osteosarcoma oncogene (Fos) and produces antinociceptive effect against inflammatory pain in the mouse model. Am J Pathol. 2019;189:886–99.

    Article  CAS  PubMed  Google Scholar 

  18. Zheng B, Li S, Liu Y, Li Y, Chen H, Tang H, et al. Spexin suppress food intake in zebrafish: Evidence from gene knockout study. Sci Rep. 2017;7:14643.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Walewski JL, Ge F, Lobdell H 4th, Levin N, Schwartz GJ, Vasselli JR, et al. Spexin is a novel human peptide that reduces adipocyte uptake of long chain fatty acids and causes weight loss in rodents with diet-induced obesity. Obesity (Silver Spring). 2014;22:1643–52.

    Article  CAS  Google Scholar 

  20. Gu L, Ma Y, Gu M, Zhang Y, Yan S, Li N, et al. Spexin peptide is expressed in human endocrine and epithelial tissues and reduced after glucose load in type 2 diabetes. Peptides. 2015;71:232–9.

    Article  CAS  PubMed  Google Scholar 

  21. Kumar S, Hossain J, Nader N, Aguirre R, Sriram S, Balagopal PB. Decreased circulating levels of spexin in obese children. J Clin Endocrinol Metab. 2016;101:2931–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Khadir A, Kavalakatt S, Madhu D, Devarajan S, Abubaker J, Al-Mulla F, et al. Spexin as an indicator of beneficial effects of exercise in human obesity and diabetes. Sci Rep. 2020;10:10635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kolodziejski PA, Pruszynska-Oszmalek E, Micker M, Skrzypski M, Wojciechowicz T, Szwarckopf P, et al. Spexin: a novel regulator of adipogenesis and fat tissue metabolism. Biochim Biophys Acta Mol Cell Biol Lipids. 2018;1863:1228–36.

    Article  CAS  PubMed  Google Scholar 

  24. James AW. Review of signaling pathways governing MSC osteogenic and adipogenic differentiation. Scientifica (Cairo). 2013;2013:684736.

    Google Scholar 

  25. Liu Y, Li S, Qi X, Zhou W, Liu X, Lin H, et al. A novel neuropeptide in suppressing luteinizing hormone release in goldfish, Carassius auratus. Mol Cell Endocrinol. 2013;374:65–72.

    Article  CAS  PubMed  Google Scholar 

  26. Liu S, Jin D, Wu JQ, Xu ZY, Fu S, Mei G, et al. Neuropeptide Y stimulates osteoblastic differentiation and VEGF expression of bone marrow mesenchymal stem cells related to canonical Wnt signaling activating in vitro. Neuropeptides. 2016;56:105–13.

    Article  CAS  PubMed  Google Scholar 

  27. Rance NE, Bruce TR. Neurokinin B gene expression is increased in the arcuate nucleus of ovariectomized rats. Neuroendocrinology. 1994;60:337–45.

    Article  CAS  PubMed  Google Scholar 

  28. Ichiki T, Kuroishi KN, Gunjigake KK, Kobayashi S, Goto T. Neurokinin B activates the formation and bone resorption activity of rat osteoclasts. Neuropeptides. 2011;45:239–44.

    Article  CAS  PubMed  Google Scholar 

  29. Escobar CM, Krajewski SJ, Sandoval-Guzmán T, Voytko ML, Rance NE. Neuropeptide Y gene expression is increased in the hypothalamus of older women. J Clin Endocrinol Metab. 2004;89:2338–43.

    Article  CAS  PubMed  Google Scholar 

  30. Son HE, Kim KM, Kim EJ, Jang WG. Kisspeptin-10 (KP-10) stimulates osteoblast differentiation through GPR54-mediated regulation of BMP2 expression and activation. Sci Rep. 2018;8:2134.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhao J, Levy D. The sensory innervation of the calvarial periosteum is nociceptive and contributes to headache-like behavior. Pain. 2014;155:1392–400.

    Article  PubMed  PubMed Central  Google Scholar 

  32. He H, Chai J, Zhang S, Ding L, Yan P, Du W, et al. CGRP may regulate bone metabolism through stimulating osteoblast differentiation and inhibiting osteoclast formation. Mol Med Rep. 2016;13:3977–84.

    Article  CAS  PubMed  Google Scholar 

  33. Louridas M, Letourneau S, Lautatzis ME, Vrontakis M. Galanin is highly expressed in bone marrow mesenchymal stem cells and facilitates migration of cells both in vitro and in vivo. Biochem Biophys Res Commun. 2009;390:867–71.

    Article  CAS  PubMed  Google Scholar 

  34. McDonald AC, Schuijers JA, Gundlach AL, Grills BL. Galanin treatment offsets the inhibition of bone formation and downregulates the increase in mouse calvarial expression of TNFalpha and GalR2 mRNA induced by chronic daily injections of an injurious vehicle. Bone. 2007;40:895–903.

    Article  CAS  PubMed  Google Scholar 

  35. Heo JH, Choi JH, Kim IR, Park BS, Kim YD. Combined treatment with low-level laser and rhBMP-2 promotes differentiation and mineralization of osteoblastic cells under hypoxic stress. Tissue Eng Regen Med. 2018;15:793–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee JM, Kim MG, Byun JH, Kim GC, Ro JH, Hwang DS, et al. The effect of biomechanical stimulation on osteoblast differentiation of human jaw periosteum-derived stem cells. Maxillofac Plast Reconstr Surg. 2017;39:7.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Fu S, Mei G, Wang Z, Zou ZL, Liu S, Pei GX, et al. Neuropeptide substance P improves osteoblastic and angiogenic differentiation capacity of bone marrow stem cells in vitro. Biomed Res Int. 2014;2014:596023.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Thouverey C, Bechkoff G, Pikula S, Buchet R. Inorganic pyrophosphate as a regulator of hydroxyapatite or calcium pyrophosphate dihydrate mineral deposition by matrix vesicles. Osteoarthritis Cartilage. 2009;17:64–72.

    Article  CAS  Google Scholar 

  39. Hasegawa T, Yamamoto T, Tsuchiya E, Hongo H, Tsuboi K, Kudo A, et al. Ultrastructural and biochemical aspects of matrix vesicle-mediated mineralization. Jpn Dent Sci Rev. 2017;53:34–45.

    Article  PubMed  Google Scholar 

  40. Garimella R, Bi X, Anderson HC, Camacho NP. Nature of phosphate substrate as a major determinant of mineral type formed in matrix vesicle-mediated in vitro mineralization: an FTIR imaging study. Bone. 2006;38:811–7.

    Article  CAS  PubMed  Google Scholar 

  41. Zhou X, Cui Y, Zhou X, Han J. Phosphate/pyrophosphate and MV-related proteins in mineralisation: discoveries from mouse models. Int J Biol Sci. 2012;8:778–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hessle L, Johnson KA, Anderson HC, Narisawa S, Sali A, Goding JW, et al. Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proc Natl Acad Sci U S A. 2002;99:9445–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Roberts FL, Rashdan NA, Phadwal K, Markby GR, Dillon S, Zoll J, et al. Osteoblast-specific deficiency of ectonucleotide pyrophosphatase or phosphodiesterase-1 engenders insulin resistance in high-fat diet fed mice. J Cell Physiol. 2021;236:4614–24.

    Article  CAS  PubMed  Google Scholar 

  44. Nam SH, Yamano A, Kim JA, Lim J, Baek SH, Kim JE, et al. Prenylflavonoids isolated from Macaranga tanarius stimulate odontoblast differentiation of human dental pulp stem cells and tooth root formation via the mitogen-activated protein kinase and protein kinase B pathways. Int Endod J. 2021;54:1142–54.

    Article  CAS  PubMed  Google Scholar 

  45. Wang CX, Ge XY, Wang MY, Ma T, Zhang Y, Lin Y. Dopamine D1 receptor-mediated activation of the ERK signaling pathway is involved in the osteogenic differentiation of bone mesenchymal stem cells. Stem Cell Res Ther. 2020;11:12.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Chan YH, Lee YC, Hung CY, Yang PJ, Lai PC, Feng SW. Three-dimensional spheroid culture enhances multipotent differentiation and stemness capacities of human dental pulp-derived mesenchymal stem cells by modulating MAPK and NF-kB signaling pathways. Stem Cell Rev Rep. 2021;17:1810–26.

  47. Miraoui H, Oudina K, Petite H, Tanimoto Y, Moriyama K, Marie PJ. Fibroblast growth factor receptor 2 promotes osteogenic differentiation in mesenchymal cells via ERK1/2 and protein kinase C signaling. J Biol Chem. 2009;284:4897–904.

    Article  CAS  PubMed  Google Scholar 

  48. Yang D, Guo J, Divieti P, Bringhurst FR. Parathyroid hormone activates PKC-delta and regulates osteoblastic differentiation via a PLC-independent pathway. Bone. 2006;38:485–96.

    Article  CAS  PubMed  Google Scholar 

  49. Reyes-Alcaraz A, Lee YN, Yun S, Hwang JI, Seong JY. Conformational signatures in beta-arrestin2 reveal natural biased agonism at a G-protein-coupled receptor. Commun Biol. 2018;1:128.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lecat S, Belemnaba L, Galzi JL, Bucher B. Neuropeptide Y receptor mediates activation of ERK1/2 via transactivation of the IGF receptor. Cell Signal. 2015;27:1297–304.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT) [NRF-2020R1A2C1007476] and [NRF-2017R1A5A2015391].

Author information

Authors and Affiliations

Authors

Contributions

FA and EKP designed the research and wrote the manuscript; FA, JAK, JL, S‐HN and H-IS performed the experiments and analyzed the results; FA, H-IS and EKP analyzed the data and revised the manuscript; and EKP supervised the project.

Corresponding author

Correspondence to Eui Kyun Park.

Ethics declarations

Conflicts of interest

The authors have no financial conflicts of interest.

Ethical statement

Animal experiments were performed in accordance with the guidelines approved by Kyungpook National University (KNU 2021–0071).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 497 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assefa, F., Kim, J., Lim, J. et al. The Neuropeptide Spexin Promotes the Osteoblast Differentiation of MC3T3-E1 Cells via the MEK/ERK Pathway and Bone Regeneration in a Mouse Calvarial Defect Model. Tissue Eng Regen Med 19, 189–202 (2022). https://doi.org/10.1007/s13770-021-00408-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-021-00408-2

Keywords

Navigation