Skip to main content
Log in

Electrochemical properties of polyaniline/carboxydextran (PANI/carDEX) composite films for biofuel cells in neutral aqueous solutions

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Electrochemical properties of composite films consisting of polyaniline/carboxydextran (PANI/carDEX) as a biofuel cell electrode platform were investigated. These composite films were formed on a planar gold surface through electropolymerization after a simple chemical modification of dextran with carboxyl groups. Cyclic voltammetry indicated that the composite films retained a redox activity in neutral pH environment. The PANI/carDEX composite films showed an electrocatalytic activity for the oxidation of ascorbic acid. The PANI/carDEX composite films also demonstrated an excellent electron-transfer mediating capability for the bioelectrocatalytic activation of glucose oxidase (GOx) toward the oxidation of glucose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bartlett PN, Simon E (2000) Poly(aniline)-poly(acrylate) composite films as modified electrodes for the oxidation of NADH. Phys Chem Chem Phys 2:2599

    Article  CAS  Google Scholar 

  • Bartlett PN, Wallace ENK (2000) The oxidation of β-nicotinamide adenine dinucleotide (NADH) at poly(aniline)-coated electrodes Part II. Kinetics of reaction at poly(aniline)-poly(styrenesulfonate) composites. J Electroanal Chem 486:23–31

    Article  CAS  Google Scholar 

  • Bullen RA, Arnot TC, Lakeman JB, Walsh FC (2006) Biofuel cells and their development. Biosens Bioelectron 21:2015–2045

    PubMed  CAS  Google Scholar 

  • Chen W, Li CM, Yang X, Sun CQ, Gao C, Zeng ZX, Sawyer J (2005) Impedance labelless detection-based polypyrrole protein biosensor. Front Biosci 10:2518–2526

    Article  PubMed  Google Scholar 

  • Cui SY, Park SM (1999) Electrochemistry of conductive polymers XXIII: polyaniline growth studied by electrochemical quartz crystal microbalance measurements. Synth Met 105:91–98

    Article  CAS  Google Scholar 

  • Davis F, Higson SPJ (2007) Biofuel cells: recent advances and applications. Biosens Bioelectron 22:1224–1235

    Article  PubMed  CAS  Google Scholar 

  • Diaz AF, Logan JA (1980) Electroactive polyaniline films. J Electroanal Chem 111:111–114

    Article  CAS  Google Scholar 

  • Fabre B, Taillebois L (2003) Poly(aniline boronic acid)-based coductimetric sensor of dopamine. Chem Commun 24:2982–2983

    Google Scholar 

  • Granot E, Katz E, Basnar B, Willner I (2005) Enhanced bioelectrocatalysis using Au-nanoparticle/polyaniline hybrid systems in thin films and microstructured rods assembled on electrodes. Chem Mater 17:4600–4609

    Article  CAS  Google Scholar 

  • Hatchett DW, Josowicz M (2008) Composites of intrinsically conducting polymers as sensing nanomaterials. Chem Rev 108:746–769

    Article  PubMed  CAS  Google Scholar 

  • Jang J (2006) Conducting polymer nanomaterials and their applications. Adv Polym Sci 199:189–259

    Article  CAS  Google Scholar 

  • Kan JQ, Pan XH, Chen C (2004) Polyaniline-uricase biosensor prepared with template process. Biosens Bioelectron 19:1635–1640

    Article  PubMed  CAS  Google Scholar 

  • Kanungo M, Kumar A, Contractor AQ (2003) Microtubule sensors and sensor array based on polyaniline synthesized in the presence of poly(styrene sulfonate). Anal Chem 75:5673–5679

    Article  PubMed  CAS  Google Scholar 

  • Karyakin AA, Strakhova AK, Yatsimirsky AK (1994) Self-doped polyanilines electrochemically active in neutral and basic aqueous solutions: electropolymerization of substituted anilines. J Electroanal Chem 371:259–265

    Article  CAS  Google Scholar 

  • Kim J, Jia H, Wang P (2006) Challenges in biocatalysis for enzyme-based biofuel cells. Biotechnol Adv 24:296–308

    Article  PubMed  CAS  Google Scholar 

  • Lahav M, Durkan C, Gabai R, Katz E, Willner I, Welland ME (2001) Redox activation of a polyaniline-coated cantilever: an electro-driven microdevice. Angew Chem Int Ed 40:4095–4097

    Article  CAS  Google Scholar 

  • Langer JJ, Filipiak M, Kecinska J, Jasnowska J, Wlodarczak J, Buladowski B (2004) Polyaniline biosensor for choline determination. Surf Sci 573:140–145

    Article  CAS  Google Scholar 

  • Lee S, Perez-Luna VH (2005) Dextran-gold nanoparticle hybrid material for biomolecule immobilization and detection. Anal Chem 77:7204–7211

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Perez-Luna VH (2007) Surface-grafted hybrid material consisting of gold nanoparticles and dextran exhibits mobility and reversible aggregation on a surface. Langmuir 23:5097–5099

    Article  PubMed  CAS  Google Scholar 

  • MacDiarmid AG (2001) “Synthetic metals”: a novel role for organic polymers. Angew Chem Int Ed 40:2581–2590

    Article  CAS  Google Scholar 

  • Novak P, Muller K, Santhanam KSV, Haas O (1997) Electrochemically active polymers for rechargeable batteries. Chem Rev 97:207–282

    Article  PubMed  CAS  Google Scholar 

  • Ohsaka T, Ohnuki Y, Oyama N, Katagiri K, Kamisako K (1984) IR absorption spectroscopic identification of electroinactive polyaniline films prepared by the electrochemical polymerization of aniline. J Electroanal Chem 161:399–405

    Article  CAS  Google Scholar 

  • Pan XH, Kan JQ, Yuan LM (2004) Polyaniline glucose oxidase biosensor prepared with template process. Sens Actuators B Chem 102:325–330

    Article  Google Scholar 

  • Potember RS, Hoffman RC, Hu HS, Cocchiaro JE, Viands CA, Murphy RA, Poehler TO (1987) Conducting organics and polymers for electronic and optical devices. Polymer 28:574–580

    Article  CAS  Google Scholar 

  • Raitman OA, Katz E, Buckmann AF, Willner I (2002) Integration of polyaniline/poly(acrylic acid) films and redox enzymes on electrode supports: an in situ electrochemical/surface plasmon resonance study of the bioelectrocatalyzed oxidation of glucose or lactate in the integrated bioelectrocatalytic systems. J Am Chem Soc 124:6487–6496

    Article  PubMed  CAS  Google Scholar 

  • Ramanavicius A, Ramanaviciene A, Malinauskas A (2006) Electrochemical sensors based on conducting polymer-polypyrrole. Electrochim Acta 51:6025–6037

    Article  CAS  Google Scholar 

  • Tian S, Baba A, Liu J, Wang Z, Knoll W, Park MK, Advincula R (2003a) Electroactivity of polyaniline multilayer films in neutral solution and their electrocatalyzed oxidation of β-nicotinamide adenine dinucleotide. Adv Funct Mater 13:473–479

    Google Scholar 

  • Tian S, Liu J, Zhu T, Knoll W (2003b) Polyaniline doped with modified gold nanoparticles and its electrochemical properties in neutral aqueous solution. Chem Commun 21:2738–2739

    Google Scholar 

  • Tian S, Liu J, Zhu T, Knoll W (2004) Polyaniline/gold nanoparticle multilayer films: assembly, properties, and biological applications. Chem Mater 16:4103–4108

    Article  CAS  Google Scholar 

  • Yue I, Epstein AJ, MacDiarmid AG (1990) Sulfonic acid ring-substituted polyaniline, a self-doped conducting polymer. Mol Cryst Liq Cryst 189:255–261

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support from the Institute of Industrial Science at the University of Tokyo and the financial support from Kawasaki Heavy Industries, Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Tsutsumi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S., Choi, B. & Tsutsumi, A. Electrochemical properties of polyaniline/carboxydextran (PANI/carDEX) composite films for biofuel cells in neutral aqueous solutions. Biotechnol Lett 31, 851–855 (2009). https://doi.org/10.1007/s10529-009-9944-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-009-9944-1

Keywords

Navigation