Skip to main content
Log in

Plant cell culture technology–harnessing a biological approach for competitive cyclotides production

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Cyclotides are naturally occurring mini-proteins that have a cyclic backbone and a knotted arrangement of three disulfide bonds. They are remarkably stable and have a diverse range of therapeutically useful biological activities, including antimicrobial and anti-HIV activity, although their natural function appears to be plant defence agents. Cyclotides are amenable to chemical synthesis; however currently most bioactivity studies have involved the use of peptides extracted from plants. Plant cell culture technology shows promise towards the goal of producing therapeutically active cyclotides in qualities and quantities required for drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abe Y, Shirane K, Yokosawa H, Matsushita H, Mitta M, Kato I, Ishii S (1993) Asparaginyl endopeptidase of jack bean seeds. Purification, characterization, and high utility in protein sequence analysis. J Biol Chem 268:3525–3529

    PubMed  CAS  Google Scholar 

  • Aboye TL, Clark RJ, Craik DJ, Göransson U (2008) Ultra-stable peptide scaffolds for protein engineering—synthesis and folding of the circular cystine knotted cyclotide cycloviolacin O2. Chembiochem 9:103–113

    Article  CAS  Google Scholar 

  • Akalezi CO, Liu S, Li QS, Yu JT, Zhong JJ (1999) Combined effects of initial sucrose concentration and inoculum size on cell growth and ginseng saponin production by suspension cultures of Panax ginseng. Process Biochem 34:639–642

    Article  CAS  Google Scholar 

  • Alfermann AW, Petersen M (1995) Natural product formation by plant cell biotechnology: results and perspectives. Plant Cell Tissue Organ Cult 43:199–205

    Article  CAS  Google Scholar 

  • Avrutina O, Schmoldt H-U, Kolmar H, Diederichsen U (2004) Fmoc-assisted synthesis of a 29-residue cystine-knot trypsin inhibitor containing a guaninyl amino acid at the P1-position. Eur J Org Chem 23:4931–4935

    Article  Google Scholar 

  • Avrutina O, Schmoldt H-U, Gabrijelcic-Geiger D, Alexander Wentzel A, Frauendorf H, Sommerhoff CP, Diederichsen U, Kolmar H (2008) Head-to-tail cyclized cystine-knot peptides by a combined recombinant and chemical route of synthesis. Chembiochem 9:33–37

    Article  PubMed  CAS  Google Scholar 

  • Bidwell S, Pederick J, Sommer-Knudsen J, Woodrow I (2001) Micropropagation of the nickel hyperaccumulator Hybanthus floribundus (Family Violaceae). Plant Cell Tissue Organ Cult 67:89–92

    Article  CAS  Google Scholar 

  • Camarero JA, Kimura RH, Woo Y-H, Shekhtman A, Cantor J (2007) Biosynthesis of a fully functional cyclotide inside living bacterial cells. ChemBiochem 8:1363–1366

    Article  PubMed  CAS  Google Scholar 

  • Čemažar M, Craik DJ (2007) Microwave-assisted Boc-solid phase peptide synthesis of cyclic cysteine-rich peptides. J Pept Sci (in press). doi:10.1002/psc.972

  • Chen B, Colgrave ML, Daly NL, Rosengren KJ, Gustafson KR, Craik DJ (2005) Isolation and characterization of novel cyclotides from Viola hederaceae: solution structure and anti-HIV activity of vhl-1, a leaf-specific expressed cyclotide. J Biol Chem 280:22395–22405

    Article  PubMed  CAS  Google Scholar 

  • Clark RJ, Daly NL, Craik DJ (2006) Structural plasticity of the cyclic-cystine-knot framework: implications for biological activity and drug design. Biochem J 394:85–93

    Article  PubMed  CAS  Google Scholar 

  • Cloutier M, Bouchard-Marchaud É, Perrier M, Jolicoeur M (2008) A predictive nutritional model for plant cells and hairy roots. Biotechnol Bioeng 99:189–200

    Article  PubMed  CAS  Google Scholar 

  • Colgrave ML, Craik DJ (2004) Thermal, chemical, and enzymatic stability of the cyclotide kalata B1: the importance of cyclic cystine knot. Biochemistry 43:5965–5975

    Article  PubMed  CAS  Google Scholar 

  • Collin HA (2001) Secondary product formation in plant tissue cultures. Plant Growth Regul 34:119–134

    Article  CAS  Google Scholar 

  • Craik DJ, Daly NL, Bond T, Waine C (1999) Plant cyclotides: a unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif. J Mol Biol 294:1327–1336

    Article  PubMed  CAS  Google Scholar 

  • Craik DJ, Čemažar M, Daly NL (2007) The chemistry and biology of cyclotides. Curr Opin Drug Discov Devel 10:176–184

    PubMed  CAS  Google Scholar 

  • Daly NL, Koltay A, Gustafson K.R, Boyd MR, Casas-Finet JR, Craik DJ (1999) Solution structure by NMR of circulin A: a macrocyclic knotted peptide having anti-HIV activity. J Mol Biol 285:333–345

    Article  PubMed  CAS  Google Scholar 

  • Daly NL, Gustafson KR, Craik DJ (2004) The role of the peptide backbone in the anti-HIV activity of the cyclotide kalata B1. FEBS Lett 574:69–72

    Article  PubMed  CAS  Google Scholar 

  • Doran PM (2000) Foreign protein production in plant tissue cultures. Curr Opin Biotechnol 11:199–204

    Article  PubMed  CAS  Google Scholar 

  • Dörnenburg H, Knorr D (1995) Strategies for the improvement of secondary metabolite production in plant cell cultures. Enzyme Microb Technol 17:674–684

    Article  Google Scholar 

  • Dörnenburg H, Seydel P (2008) Effect of irradiation intensity on cell growth and kalata B1 accumulation in Oldenlandia affinis cultures. Plant Cell Tiss Org Cult 92:93–99

    Article  Google Scholar 

  • Dörnenburg H, Frickinger P, Seydel P (2007) Plant cell-based processes for cyclotides production. J Biotechnol (in press). doi:10.1016/j.jbiotec.2008.03.005

  • Dutton JL, Renda RF, Waine C, Clark RJ, Daly NL, Jennings CV, Anderson MA, Craik DJ (2004) Conserved structural and sequence elements implicated in the processing of gene-coded circular proteins. J Biol Chem 279:46858–46867

    Article  PubMed  CAS  Google Scholar 

  • Felizmenio-Quimio M, Daly N, Craik D (2001) Circular proteins in plants: solution structure of a novel macrocyclic trypsin inhibitor from Momordica cochinchinensis. J Biol Chem 276:22875–22882

    Article  PubMed  CAS  Google Scholar 

  • Fischer R, Stoger E, Schillberg S, Christou P, Twyman RM (2004) Plant-based production of biopharmaceuticals. Curr Opin Plant Biol 7:152–158

    Article  PubMed  CAS  Google Scholar 

  • Fujita Y, Tabata M, Nishi A, Yamada Y (1982) New medium and production of secondary compounds with two-staged culture method. In: Fujiwara A (ed) Plant tissue culture. Maruzen, Tokyo, Japan, pp 399–400

    Google Scholar 

  • Gillon AD, Saska I, Jennings CV, Guarino RF, Craik DJ, Anderson MA (2008) Biosynthesis of circular proteins in plants. Plant J 53:505–515

    Article  PubMed  CAS  Google Scholar 

  • Gran L (1973) On the effect of a polypeptide isolated from “Kalata-Kalata” (Oldenlandia affinis DC) on the oestrogen dominated uterus. Acta Pharmacol Toxicol 33:400–408

    CAS  Google Scholar 

  • Gruber CW, Čemažar M, Clark RJ, Horibe T, Renda RF, Anderson MA, Craik DJ (2007) A novel plant protein-disulfide isomerase involved in the oxidative folding of cystine knot defense proteins. J Biol Chem 282:20435–20446

    Article  PubMed  CAS  Google Scholar 

  • Guillon S, Trémouillaux-Guiller J, Kumar Pati P, Rideau M, Gantet P (2006) Harnessing the potential of hairy roots: dawn of a new era. Trends Biotechnol 24:403–409

    Article  PubMed  CAS  Google Scholar 

  • Gunasekera S, Daly NL, Anderson MA, Craik DJ (2006) Chemical synthesis and biosynthesis of the cyclotide family of circular proteins. Life 58:515–524

    PubMed  CAS  Google Scholar 

  • Hellwig S, Drossard J, Twyman RM, Fischer R (2004) Plant cell cultures for the production of recombinant proteins. Nat Biotechnol 22:1415–1422

    Article  PubMed  CAS  Google Scholar 

  • Hoekstra SS, Harkes PA, Verpoorte R, Libbenga KR (1990) Effect of auxin on cytodifferentiation and production of quinoline alkaloids in compact globular structures of Cinchona ledgeriana. Plant Cell Rep 8:571–574

    Article  CAS  Google Scholar 

  • Hood EF (2004) Where, oh where has my protein gone? Trends Biotechnol 22:53–55

    Article  PubMed  CAS  Google Scholar 

  • Ireland DC, Wang CK, Wilson JA, Gustafson KR, Craik DJ (2008) Cyclotides as natural anti-HIV agents. Biopolymers 90:51–60

    Article  PubMed  CAS  Google Scholar 

  • Jennings C, West J, Waine C, Craik DJ, Anderson M (2001) Biosynthesis and insecticidal properties of plant cyclotides: the cyclic knotted protein from Oldenlandia affinis. Proc Natl Acad Sci USA 98:10614–10619

    Article  PubMed  CAS  Google Scholar 

  • Jennings CV, Rosengren KJ, Daly NL, Plant M, Stevens J, Scanlon MJ, Waine C, Norman DG, Anderson MA, Craik DJ (2005) Isolation, solution structure, and insecticidal activity of Kalata B2, circular proteins with a twist: do Möbius strips exist in nature? Biochemistry 44:851–860

    Article  PubMed  CAS  Google Scholar 

  • Jianfeng X, Zhiguo S, Pusun F (1998) Suspension culture of compact callus aggregate of Rhodiola sachalinensis for improved salidroside production. Enzyme Microb Technol 23:20–27

    Article  CAS  Google Scholar 

  • Kamimori H, Hall K, Craik DJ, Aguilar MI (2005) Studies on the membrane interactions of the cyclotides kalata B1 and kalata B6 on model membrane systems by surface plasmon resonance. Anal Biochem 337:149–153

    Article  PubMed  CAS  Google Scholar 

  • Katsara M, Tselios T, Deraos S, Deraos G, Matsoukas M-T, Lazoura E, Matsoukas J, Apostolopoulos V (2006) Round and round we go: cyclic peptides in disease. Curr Med Chem 13:2221–2232

    Article  PubMed  CAS  Google Scholar 

  • Kimura RH, Tran AT, Camarero JA (2006) Biosynthesis of the cyclotide kalata B1 by using protein splicing. Angew Chem Int Ed 45:973–978

    Article  CAS  Google Scholar 

  • Lindholm P, Göransson U, Johansson S, Claeson P, Gulbo J, Larsson R, Bohlin L, Backlund A (2002) Cyclotides: a novel type of cytotoxic agents. Mol Cancer Ther 1:365–369

    PubMed  CAS  Google Scholar 

  • Linsmaier E, Skoog F (1965) Organic growth factor requirements of tobacco tissue cultures. Physiol Plant 18:100–127

    Article  CAS  Google Scholar 

  • Mishra BN, Ranjan R (2008) Growth of hairy-root cultures in various bioreactors for the production of secondary metabolites. Biotechnol Appl Biochem 49:1–10

    Article  PubMed  CAS  Google Scholar 

  • Mulvenna J, Sando L, Craik D (2005) Processing of a 22 kDa precursor protein to produce the novel circular protein tricyclon A. Structure 13:691–701

    Article  PubMed  CAS  Google Scholar 

  • Muntz K, Shutov AD (2002) Legumains and their functions in plants. Trends Plant Sci 7:340–344

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Plant Physiol 15:473–497

    Article  CAS  Google Scholar 

  • Nomura Y (1994) Method for deriving callus of plant of genus Viola. JP Patent 6,030,769

  • Pasqua G, Pinarosa A, Monacelli B, Santamaria AR, Argentieri M (2003) Metabolites in cell suspension cultures, calli, and in vitro regenerated organs of Hypericum perforatum cv. Topas. Plant Sci 165:977–982

    Article  CAS  Google Scholar 

  • Pelegrini PB, Quirino BF, Franco OL (2007) Plant cyclotides: an unusual class of defense compounds. Peptides 28:1475–1481

    Article  PubMed  CAS  Google Scholar 

  • Ramachandra Rao S, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20:101–153

    Article  CAS  Google Scholar 

  • Ramkrishna S, Swaminathan T (2004) Response surface modeling and optimization to elucidate and analyze the effects of inoculum age and size on surfactin production. Biochem Eng J 21:141–148

    Article  Google Scholar 

  • Routien JB, Nickel LG (1952) Cultivation of plant tissue. US Patent 2,747,334

  • Saether O, Craik DJ, Campbell ID, Sletten K, Juul J, Norman DG (1995) Elucidation of the primary and three-dimensional structure of the uterotonic polypeptide kalata B1. Biochemistry 34:4147–4158

    Article  PubMed  CAS  Google Scholar 

  • Seydel P, Dörnenburg H (2006) Establishment of in vitro plants, cell and tissue cultures from Oldenlandia affinis for the production of cyclic peptides. Plant Cell Tiss Org Cult 85:247–255

    Article  Google Scholar 

  • Seydel P, Gruber CW, Craik DJ, Dörnenburg H (2007) Formation of cyclotides and variations in cyclotide expression in Oldenlandia affinis suspension cultures. Appl Microbiol Biotechnol 77:275–284

    Article  PubMed  CAS  Google Scholar 

  • Shenkarev ZO, Nadezhdin KD, Sobol VA, Sobol AG, Skjeldal L, Arseniev AS (2006). Conformation and mode of membrane interaction in cyclotides. FEBS J 273:2658–2672

    Article  PubMed  CAS  Google Scholar 

  • Simonsen SM, Sando L, Ireland DC, Colgrave ML, Bharthi R, Göransson U, Craik DJ (2005) A continent of plant defense peptide diversity: cyclotides in Australian Hybanthus (Violaceae). Plant Cell 17:3176–3189

    Article  PubMed  CAS  Google Scholar 

  • Sirikantaramas S, Yamakazi M, Saito K (2008) Mechanism of resistance to self-produced toxic secondary metabolites in plants. Phytochem Rev (in press). doi: 10.1007/s11101-007-9080-2

  • Srivastava S, Srivastava AK. (2007) Hairy root culture for mass-production of high-value secondary metabolites. Crit Rev Biotechnol 27:29–43

    Article  PubMed  CAS  Google Scholar 

  • Stafford A (1992) Plant cell cultures as a source of bioactive small molecules. Curr Opin Drug Discov Devel 5:296–303

    Google Scholar 

  • Svångard E, Göransson U, Hocaoglu Z, Gullbo J, Larsson R, Claeson P, Bohlin L (2004) Cytotoxic cyclotides from Viola tricolor. J Nat Prod 67:144–147

    Article  PubMed  Google Scholar 

  • Takeda O, Miura Y, Mitta M, Matsushita H, Kato I, Abe Y, Yokosawa H, Ishii S (1994) Isolation and analysis of cDNA encoding a precursor of Canavalia ensiformis asparaginyl endopeptidase (legumain). J Biochem 116:541–546

    PubMed  CAS  Google Scholar 

  • Tam JP, Lu YA, Yang JL, Chiu KW (1999) An unusual structural motif of antimicrobial peptides containing end-to-end macrocycle and cystine-knot disulfides. Proc Natl Acad Sci USA 96:8913–8918

    Article  PubMed  CAS  Google Scholar 

  • Thongyoo P, Tate EW, Leatherbarrow RJ (2006) Total synthesis of the macrocyclic cysteine knot microprotein MCoTI-II. Chem Commun 2006:2848–2850

    Article  Google Scholar 

  • Thongyoo P, Jaulent AG, Tate EW, Leatherbarrow RJ (2007) Immobilized protease-assisted synthesis of engineered cysteine-knot microproteins. ChemBioChem 8:1107–1109

    Article  PubMed  CAS  Google Scholar 

  • Trabi M, Craik DJ (2002) Circular proteins—no end in sight. Trends Biochem Sci 27:132–138

    Article  PubMed  CAS  Google Scholar 

  • Trabi M, Craik DJ (2004) Tissue-specific expression of head-to-tail cyclized miniproteins in Violaceae and structure determination of the root cyclotide Viola hederacea root cyclotide1. Plant Cell 16:2204–2216

    Article  PubMed  CAS  Google Scholar 

  • Trabi M, Svångard E, Herrmann A, Göransson U, Claeson P, Craik DJ, Bohlin L (2004) Variations in cyclotide expression in Viola species. J Nat Prod 67:806–810

    Article  PubMed  CAS  Google Scholar 

  • Walter C, Steinau T, Gerbsch N, Buchholz R (2003) Monoseptic cultivation of phototrophic microorganisms - development and scale-up of a photobioreactor with thermal sterilization. Biomol Eng 20:261–271

    Article  PubMed  CAS  Google Scholar 

  • Xu JF, Yin PQ, Wei XG, Su ZG (1998) Self-immobilized aggregate culture of Taxus cuspidata for improved taxol production. Biotechnol Techn 12:241–244

    Article  CAS  Google Scholar 

  • Zhao J, Zhu WH, Hu Q, He XW (2001) Enhanced indole alkaloid production in suspension compact callus clusters of Catharanthus roseus: impacts of plant growth regulators and sucrose. Plant Growth Regul 33:33–41

    Article  Google Scholar 

  • Zhao J, Verpoorte R (2007) Manipulating indole alkaloid production by Catharanthus roseus cell cultures in bioreactors: from biochemical processing to metabolic engineering. Phytochem Rev 6:435–457

    Article  CAS  Google Scholar 

  • Zhong JJ, Yoshida T (1995) High-density cultivation of Perilla frutescens cell suspensions for anthocyanin production: effects of sucrose concentration and inoculum size. Enzyme Microb Technol 17:1073–1079

    Article  CAS  Google Scholar 

  • Zhou LG, Wu JY (2006) Development and application of medicinal plant tissue cultures for production of drugs and herbal medicinals in China. Nat Prod Rep 23:789–810

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank her co-workers Verena Lürbke and Peter Seydel, and the students involved in the project, Petra Frickinger, Tetyana Heimstädt, Andrea Meyerhöfer, Holger Riess, Daniel Roth, David Wallis and Jorge Wong, for the data resulting from their diploma and master thesis or study work. HD appreciates the excellent technical assistance of Christine Friedl. Parts of the work were supported by a Research Grant from the Deutsche Forschungsgemeinschaft DFG (DO 550/5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heike Dörnenburg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dörnenburg, H. Plant cell culture technology–harnessing a biological approach for competitive cyclotides production. Biotechnol Lett 30, 1311–1321 (2008). https://doi.org/10.1007/s10529-008-9704-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-008-9704-7

Keywords

Navigation