Advertisement

Biotechnology Letters

, Volume 28, Issue 9, pp 637–640 | Cite as

Lipase-mediated Transformation of Vegetable Oils into Biodiesel using Propan-2-ol as Acyl Acceptor

  • Mukesh Kumar Modi
  • J. R. C. Reddy
  • B. V. S. K. Rao
  • R. B. N. PrasadEmail author
Article

Abstract

Propan-2-ol was used as an acyl acceptor for immobilized lipase-catalyzed preparation of biodiesel. The optimum conditions for transesterification of crude jatropha (Jatropha curcas), karanj (Pongamia pinnata) and sunflower (Helianthus annuus) oils were 10% Novozym-435 (immobilized Candida antarctica lipase B) based on oil weight, alcohol to oil molar ratio of 4:1 at 50 °C for 8 h. The maximum conversions achieved using propan-2-ol were 92.8, 91.7 and 93.4% from crude jatropha, karanj and sunflower oils, respectively. Reusability of the lipase was maintained over 12 repeated cycles with propan-2-ol while it reached to zero by 7th cycle when methanol was used as an acyl acceptor, under standard reaction conditions.

Keywords

biodiesel Candida antarctica propan-2-ol transesterification vegetable oil 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Basri, M, Heng, AC, Razak, CNA, Wan Yunus, WMZ, Ahmad, M, Rahman, RNA, Ampon, K, Salleh, AB 1997Alcoholysis of palm oil mid-fraction by lipase from Rhizopus rhizopodiformis J. Am. Oil Chem. Soc.74113116Google Scholar
  2. Chen, JW, Wu, WT 2003Regeneration of immobilized Candida antarctica lipase for transesterificationJ. Biosci. Bioeng.95466469PubMedGoogle Scholar
  3. Clark, DS 1994Can immobilization be exploited to modify enzyme activity?Trends Biotechnol.12439443CrossRefPubMedGoogle Scholar
  4. Cowan, D 1996Industrial enzyme technologyTrends Biotechnol.14177178CrossRefGoogle Scholar
  5. Fukuda, H, Kondo, A, Noda, H 2001Biodiesel fuel production by transesterification of oilsJ. Biosci. Bioeng.92405416PubMedCrossRefGoogle Scholar
  6. Kusdiana, D, Saka, S 2004Effects of water on biodiesel fuel production by supercritical methanol treatmentBioresour. Technol.91289295CrossRefPubMedGoogle Scholar
  7. Lee, I, Johnson, LA, Hammond, EG 1995Use of branched-chain esters to reduce the crystallization temperature of biodieselJ. Am. Oil Chem. Soc.7211551160Google Scholar
  8. Mittelbach, M 1990Lipase catalyzed alcoholysis of sunflower oilJ. Am. Oil Chem. Soc.67168170Google Scholar
  9. Nelson, LA, Foglia, TA, Marmer, WN 1996Lipase-catalyzed production of biodieselJ. Am. Oil Chem. Soc.7311911195Google Scholar
  10. Official Methods and Recommended Practices of the American Oil Chemists’ Society (2004), Saponification Value, Method Cd 3–25, 5th edn., Champaign, Illinois: AOCS PressGoogle Scholar
  11. Samukawa, T, Kaieda, M, Matsumoto, T, Ban, K, Kondo, A, Shimada, Y, Noda, H, Fukuda, H 2000Pretreatment of immobilized Candida antarctica lipase for biodiesel fuel production from plant oilJ. Biosci. Bioeng.90180183PubMedGoogle Scholar
  12. Soumanou, MM, Bornscheuer, UT 2003Lipase-catalyzed alcoholysis of vegetable oilsEur. J. Lipid Sci. Technol.105656660CrossRefGoogle Scholar
  13. Warabi, Y, Kusdiana, D, Saka, S 2004Reactivity of triglycerides and fatty acids of rapeseed oil in supercritical alcoholsBioresour. Technol.91283287CrossRefPubMedGoogle Scholar
  14. Zhang, Y, Dube, MA, McLean, DD, Kates, M 2003Biodiesel production from waste cooking oil. 1. Process design and technological assessmentBioresour. Technol.89116CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Mukesh Kumar Modi
    • 1
  • J. R. C. Reddy
    • 1
  • B. V. S. K. Rao
    • 1
  • R. B. N. Prasad
    • 1
    Email author
  1. 1.Division of Lipid Science and TechnologyIndian Institute of Chemical TechnologyHyderabadIndia

Personalised recommendations