Skip to main content
Log in

A Genetic Analysis of the Stinging and Guarding Behaviors of the Honey Bee

  • Original Research
  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

In order to identify genes that are influencing defensive behaviors, we have taken a new approach by dissecting colony-level defensive behavior into individual behavioral measurements using two families containing backcross workers from matings involving European and Africanized bees. We removed the social context from stinging behavior by using a laboratory assay to measure the stinging response of individual bees. A mild shock was given to bees using a constant-current stimulator. The time it took bees to sting in response to this stimulus was recorded. In addition, bees that were seen performing guard behaviors at the hive entrance were collected. We performed QTL mapping in two backcross families with SNP probes within genes and identified two new QTL regions for stinging behavior and another QTL region for guarding behavior. We also identified several candidate genes involved in neural signaling, neural development and muscle development that may be influencing stinging and guarding behaviors. The lack of overlap between these regions and previous defensive behavior QTL underscores the complexity of this behavior and increases our understanding of its genetic architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ammons AD, Hunt GJ (2008) Identification of quantitative trait loci and candidate genes influencing ethanol sensitivity in honey bees. Behav Genet 38:531–553

    Article  PubMed  Google Scholar 

  • Arechavaleta-Velasco ME, Hunt GJ (2004) Binary trait loci that influence honey bee (Hymenoptera : Apidae) guarding behavior. Ann Entomol Soc Am 97:177–183

    Article  Google Scholar 

  • Arechavaleta-Velasco ME, Hunt GJ, Emore C (2003) Quantitative trait loci that influence the expression of guarding and stinging behaviors of individual honey bees. Behav Genet 33:357–364

    Article  PubMed  Google Scholar 

  • Awasaki T, Tatsumi R, Takahashi K, Arai K, Nakanishi Y, Ueda R, Ito K (2006) Essential role of the apoptotic cell engulfment genes draper and ced-6 in programmed axon pruning during Drosophila metamorphosis. Neuron 50:855–867

    Article  PubMed  Google Scholar 

  • Beye M, Gattermeier I, Hasselmann M, Gempe T, Schioett M, Baines JF, Schlipalius D, Mougel F, Emore C, Rueppell O, Sirvio A, Guzman-Novoa E, Hunt G, Solignac M, Page RE (2006) Exceptionally high levels of recombination across the honey bee genome. Genome Res 16:1339–1344

    Article  PubMed  Google Scholar 

  • Boquet I, Hitier R, Dumas M, Chaminade M, Preat T (2000) Central brain postembryonic development in Drosophila: implication of genes expressed at the interhemispheric junction. J Neurobiol 42:33–48

    Article  PubMed  Google Scholar 

  • Boyle M, Nighorn A, Thomas JB (2006) Drosophila Eph receptor guides specific axon branches of mushroom body neurons. Development 133:1845–1854

    Article  PubMed  Google Scholar 

  • Breed MD, Rogers KB (1991) The behavioral-genetics of colony defense in honey bees: genetic variability for guarding behavior. Behav Genet 21:295–303

    Article  PubMed  Google Scholar 

  • Breed MD, Robinson GE, Page RE (1990) Division-of-labor during honey-bee colony defense. Behav Ecol Sociobiol 27:395–401

    Article  Google Scholar 

  • Breed MD, Guzman-Novoa E, Hunt GJ (2004) Defensive behavior of honey bees: organization, genetics, and comparisons with other bees. Annu Rev Entomol 49:271–298

    Article  PubMed  Google Scholar 

  • Burgo A, Sotirakis E, Simmler MC, Verraes A, Chamot C, Simpson JC, Lanzetti L, Proux-Gillardeaux V, Galli T (2009) Role of Varp, a Rab21 exchange factor and TI-VAMP/VAMP7 partner, in neurite growth. EMBO Rep 10:1117–1124

    Article  PubMed  Google Scholar 

  • Burrell BD, Smith BH (1994) Age-related but not caste-related regulation of abdominal mechanisms underlying the sting reflex of the honey-bee, Apis-mellifera. J Comp Physiol A Sens Neural Behav Physiol 174:581–592

    Article  Google Scholar 

  • Collins AM, Rinderer TE, Harbo JR, Bolten AB (1982) Colony defense by Africanized and European honey bees. Science 218:72–74

    Article  PubMed  Google Scholar 

  • Collins AM, Rinderer TE, Tucker KW, Pesante DG (1987) Response to alarm pheromone by European and Africanized honeybees. J Apic Res 26:217–223

    Google Scholar 

  • Collins AM, Rinderer TE, Tucker KW (1988) Colony defense of two honeybee types and their hybrid. I. Naturally mated queens. J Apic Res 27:137–140

    Google Scholar 

  • Dearborn R, He Q, Kunes S, Dai Y (2002) Eph receptor tyrosine kinase-mediated formation of a topographic map in the Drosophila visual system. J Neurosci 22:1338–1349

    PubMed  Google Scholar 

  • Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4:P3

    Article  PubMed  Google Scholar 

  • Dierick HA, Greenspan RJ (2007) Serotonin and neuropeptide F have opposite modulatory effects on fly aggression. Nat Genet 39:678–682

    Article  PubMed  Google Scholar 

  • Dorsten JN, Kolodziej PA, VanBerkum MFA (2007) Frazzled regulation of myosin II activity in the Drosophila embryonic CNS. Dev Biol 308:120–132

    Article  PubMed  Google Scholar 

  • Dupuis J, Siegmund D (1999) Statistical methods for mapping quantitative trait loci from a dense set of markers. Genetics 151:373–386

    PubMed  Google Scholar 

  • Eggert T, Hauck B, Hildebrandt N, Gehring WJ, Walldorf U (1998) Isolation of a Drosophila homolog of the vertebrate homeobox gene Rx and its possible role in brain and eye development. Proc Natl Acad Sci USA 95:2343–2348

    Article  PubMed  Google Scholar 

  • Eisenhardt D, Kuhn C, Leboulle G (2006) The PKA-CREB system encoded by the honeybee genome. Insect Mol Biol 15:551–561

    Article  PubMed  Google Scholar 

  • Fuentes-Medel Y, Logan MA, Ashley J, Ataman B, Budnik V, Freeman MR (2009) Glia and Muscle Sculpt Neuromuscular Arbors by Engulfing Destabilized Synaptic Boutons and Shed Presynaptic Debris. PLoS Biol 7(8). doi:10.1371/journal.pbio.1000184

  • Gervasi N, Tchenio P, Preat T (2010) PKA dynamics in a Drosophila learning center: coincidence detection by rutabaga adenylyl cyclase and spatial regulation by dunce phosphodiesterase. Neuron 65:516–529

    Article  PubMed  Google Scholar 

  • Guzman-Novoa E, Page RE, Spangler HG, Erickson EH (1999) A comparison of two assays to test the defensive behaviour of honey bees (Apis mellifera). J Apic Res 38:205–209

    Google Scholar 

  • Guzman-Novoa E, Hunt GJ, Uribe JL, Smith C, Arechavaleta-Velasco ME (2002) Confirmation of QTL effects and evidence of genetic dominance of honeybee defensive behavior: results of colony and individual behavioral assays. Behav Genet 32:95–102

    Article  PubMed  Google Scholar 

  • Guzman-Novoa E, Hunt GJ, Uribe-Rubio JL, Prieto-Merlos D (2004) Genotypic effects of honey bee (Apis mellifera) defensive behavior at the individual and colony levels: the relationship of guarding, pursuing and stinging. Apidologie 35:15–24

    Article  Google Scholar 

  • Guzman-Novoa E, Hunt GJ, Page RE, Uribe-Rubio JL, Prieto-Merlos D, Becerra-Guzman F (2005) Paternal effects on the defensive behavior of honeybees. J Hered 96:376–380

    Article  PubMed  Google Scholar 

  • Hanson BJ, Hong WJ (2003) Evidence for a role of SNX16 in regulating traffic between the early and later endosomal compartments. J Biol Chem 278(36):34617–34630

    Article  PubMed  Google Scholar 

  • Hauser F, Cazzamali G, Williamson M, Blenau W, Grimmelikhuijzen CJP (2006) A review of neurohormone GPCRs present in the fruitfly Drosophila melanogaster and the honey bee Apis mellifera. Prog Neurobiol 80:1–19

    Article  PubMed  Google Scholar 

  • Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  Google Scholar 

  • Hummel T, Schimmelpfeng K, Klambt C (1999) Commissure formation in the embryonic CNS of Drosophila I. Identification of the required gene functions. Dev Biol 209:381–398

    Article  PubMed  Google Scholar 

  • Hunt GJ (2007) Flight and fight: a comparative view of the neurophysiology and genetics of honey bee defensive behavior. J Insect Physiol 53:399–410

    Article  PubMed  Google Scholar 

  • Hunt GJ, Guzman-Novoa E, Fondrk MK, Page RE (1998) Quantitative trait loci for honey bee stinging behavior and body size. Genetics 148:1203–1213

    PubMed  Google Scholar 

  • Hunt GJ, Guzman-Novoa E, Uribe-Rubio JL, Prieto-Merlos D (2003) Genotype-environment interactions in honeybee guarding behaviour. Anim Behav 66:459–467

    Article  Google Scholar 

  • Johnson BR (2008) Within-nest temporal polyethism in the honey bee. Behav Ecol Sociobiol 62:777–784

    Article  Google Scholar 

  • Kawasaki F, Iyer J, Posey LL, Sun CE, Mammen SE, Yan H, Ordway RW (2011) The disabled protein functions in CLATHRIN-mediated synaptic vesicle endocytosis and exoendocytic coupling at the active zone. Proc Natl Acad Sci USA 108:E222–E229

    Article  PubMed  Google Scholar 

  • Koch I, Schwarz H, Beuchle D, Goellner B, Langegger M, Aberle H (2008) Drosophila ankyrin 2 is required for synaptic stability. Neuron 58:210–222

    Article  PubMed  Google Scholar 

  • Kolmes SA, Fergusson-Kolmes LA (1989) Measurements of stinging behaviour in individual worker honeybees (Apis mellifera L.). J Apic Res 28:71–78

    Google Scholar 

  • Lapidge KL, Oldroyd BP, Spivak M (2002) Seven suggestive quantitative trait loci influence hygienic behavior of honey bees. Naturwissenschaften 89:565–568

    PubMed  Google Scholar 

  • Mackay TFC (2004) The genetic architecture of quantitative traits: lessons from Drosophila. Curr Opin Genet Dev 14:253–257

    Article  PubMed  Google Scholar 

  • Moore AJ, Breed MD, Moor MJ (1987) The guard honey bee-ontogeny and behavioral variability of workers performing a specialized task. Anim Behav 35:1159–1167

    Article  Google Scholar 

  • Paxton RJ, Sakamoto CH, Rugiga FCN (1994) Modification of honey bee (Apis mellifera L.) stinging behaviour by within-colony environment and age. J Apic Res 33:75–82

    Google Scholar 

  • Pielage J, Steffes G, Lau DC, Parente BA, Crews ST, Strauss R, Klambt C (2002) Novel behavioral and developmental defects associated with Drosophila single-minded. Dev Biol 249:283–299

    Article  PubMed  Google Scholar 

  • Rao RP, Yuan C, Allegood JC, Rawat SS, Edwards MB, Wang X, Merrill AH, Acharya JK (2007) Ceramide transfer protein function is essential for normal oxidative stress response and lifespan. Proc Natl Acad Sci USA 104:11364–11369

    Article  PubMed  Google Scholar 

  • Renger JJ, Ueda A, Atwood HL, Govind CK, Wu CF (2000) Role of cAMP cascade in synaptic stability and plasticity: ultrastructural and physiological analyses of individual synaptic boutons in Drosophila memory mutants. J Neurosci 20:3980–3992

    PubMed  Google Scholar 

  • Robinson GE, Page RE (1988) Genetic determination of guarding and undertaking in honeybee colonies. Nature 333:356–358

    Article  Google Scholar 

  • Rodal AA, Blunk AD, Akbergenova Y, Jorquera RA, Buhl LK, Littleton JT (2011) A presynaptic endosomal trafficking pathway controls synaptic growth signaling. J Cell Biol 193:201–217

    Article  PubMed  Google Scholar 

  • Rohrbough J, Rushton E, Palanker L, Woodruff E, Matthies HJG, Acharya U, Acharya JK, Broadie K (2004) Ceramidase regulates synaptic vesicle exocytosis and trafficking. J Neurosci 24:7789–7803

    Article  PubMed  Google Scholar 

  • Shorter J, Rueppell O (2012) A review on self-destructive defense behaviors in social insects. Insect Soc 59. doi:10.1007/s00040-011-0210-x

  • Simeone A, Dapice MR, Nigro V, Casanova J, Graziani F, Acampora D, Avantaggiato V (1994) Orthopedia, a novel homeobox-containing gene expressed in the developing CNS of both mouse and Drosophila. Neuron 13:83–101

    Article  PubMed  Google Scholar 

  • Skoulakis EMC, Kalderon D, Davis RL (1993) Preferential expression in mushroom bodies of the catalytic subunit of protein kinase-a and its role in learning and memory. Neuron 11:197–208

    Article  PubMed  Google Scholar 

  • Solignac M, Mougel F, Vautrin D, Monnerot M, Cornuet JM (2007) A third-generation microsatellite-based linkage map of the honey bee, Apis mellifera, and its comparison with the sequence-based physical map. Genome Biol 8:1–14

    Article  Google Scholar 

  • Sonnenfeld M, Ward M, Nystrom G, Mosher J, Stahl S, Crews S (1997) The Drosophila tango gene encodes a bHLH-PAS protein that is orthologous to mammalian Arnt and controls CNS midline and tracheal development. Development 124:4571–4582

    PubMed  Google Scholar 

  • Stancevic B, Kolesnick R (2010) Ceramide-rich platforms in transmembrane signaling. FEBS Lett 584:1728–1740

    Article  PubMed  Google Scholar 

  • Tweedie S, Ashburner M, Falls K, Leyland P, McQuilton P, Marygold S, Millburn G, Osumi-Sutherland D, Schroeder A, Seal R, Zhang HY (2009) FlyBase: enhancing Drosophila gene ontology annotations. Nucleic Acids Res 37:D555–D559

    Article  PubMed  Google Scholar 

  • Uribe-Rubio JL, Guzman-Novoa E, Vazquez-Pelaez CG, Hunt GJ (2008) Genotype, task specialization, and nest environment influence the stinging response thresholds of individual Africanized and European honeybees to electrical stimulation. Behav Genet 38:93–100

    Article  PubMed  Google Scholar 

  • Van Ooijen JW (2004) MapQTL 5 Software for the mapping of quantitative trait loci in experimental populations. Kyazma B.V, Wageningen

    Google Scholar 

  • Van Ooijen JW (2006) JoinMap version 4.0, software for the calculation of genetic linkage maps in experimental populations. Kyazma B.V, Wageningen

  • Walldorf U, Kiewe A, Wickert M, Ronshaugen M, McGinnis W (2000) Homeobrain, a novel paired-like homeobox gene is expressed in the Drosophila brain. Mech Dev 96:141–144

    Article  PubMed  Google Scholar 

  • Weinstock GM, Robinson GE, Gibbs RA, Worley KC, Evans JD, Maleszka R, Robertson HM, Weaver DB, Beye M, Bork P, Elsik CG, Hartfelder K, Hunt GJ, Zdobnov EM, Amdam GV, Bitondi MMG, Collins AM, Cristino AS, Lattorff HMG, Lobo CH, Moritz RFA, Nunes FMF, Page RE, Simoes ZLP, Wheeler D, Carninci P, Fukuda S, Hayashizaki Y, Kai C, Kawai J, Sakazume N, Sasaki D, Tagami M, Albert S, Baggerman G, Beggs KT, Bloch G, Cazzamali G, Cohen M, Drapeau MD, Eisenhardt D, Emore C, Ewing MA, Fahrbach SE, Foret S, Grimmelikhuijzen CJP, Hauser F, Hummon AB, Huybrechts J, Jones AK, Kadowaki T, Kaplan N, Kucharski R, Leboulle G, Linial M, Littleton JT, Mercer AR, Richmond TA, Rodriguez-Zas SL, Rubin EB, Sattelle DB, Schlipalius D, Schoofs L, Shemesh Y, Sweedler JV, Velarde R, Verleyen P, Vierstraete E, Williamson MR, Ament SA, Brown SJ, Corona M, Dearden PK, Dunn WA, Elekonich MM, Fujiyuki T, Gattermeier I, Gempe T, Hasselmann M, Kage E, Kamikouchi A, Kubo T, Kunieda T, Lorenzen MD, Milshina NV, Morioka M, Ohashi K, Overbeek R, Ross CA, Schioett M, Shippy T, Takeuchi H, Toth AL, Willis JH, Wilson MJ, Gordon KHJ, Letunic I, Hackett K, Peterson J, Felsenfeld A, Guyer M, Solignac M, Agarwala R, Cornuet JM, Monnerot M, Mougel F, Reese JT, Vautrin D, Gillespie JJ, Cannone JJ, Gutell RR, Johnston JS, Eisen MB, Iyer VN, Iyer V, Kosarev P, Mackey AJ, Solovyev V, Souvorov A, Aronstein KA, Bilikova K, Chen YP, Clark AG, Decanini LI, Gelbart WM, Hetru C, Hultmark D, Imler JL, Jiang HB, Kanost M, Kimura K, Lazzaro BP, Lopez DL, Simuth J, Thompson GJ, Zou Z, De Jong P, Sodergren E, Csuros M, Milosavljevic A, Osoegawa K, Richards S, Shu CL, Duret L, Elhaik E, Graur D, Anzola JM, Campbell KS, Childs KL, Collinge D, Crosby MA, Dickens CM, Grametes LS, Grozinger CM, Jones PL, Jorda M, Ling X, Matthews BB, Miller J, Mizzen C, Peinado MA, Reid JG, Russo SM, Schroeder AJ, St Pierre SE, Wang Y, Zhou PL, Jiang HY, Kitts P, Ruef B, Venkatraman A, Zhang L, Aquino-Perez G, Whitfield CW, Behura SK, Berlocher SH, Sheppard WS, Smith DR, Suarez AV, Tsutsui ND, Wei XH, Havlak P, Li BS, Liu Y, Jolivet A, Lee S, Nazareth LV, Pu LL, Thorn R, Stolc V, Newman T, Samanta M, Tongprasit WA, Claudianos C, Berenbaum MR, Biswas S, de Graaf DC, Feyereisen R, Johnson RM, Oakeshott JG, Ranson H, Schuler MA, Muzny D, Chacko J, Davis C, Dinh H, Gill R, Hernandez J, Hines S, Hume J, Jackson L, Kovar C, Lewis L, Miner G, Morgan M, Nguyen N, Okwuonu G, Paul H, Santibanez J, Savery G, Svatek A, Villasana D, Wright R, Honeybee Genome Sequencing C (2006) Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443:931–949

    Google Scholar 

Download references

Acknowledgments

Thanks to Lauren Brierley, Matthew Ginzel, Christie Williams and two anonymous reviewers for helpful comments. The crosses for this study were performed by M. A-V and C. R-R. Behavioral assays were performed by M. A-V., C. R-R., Sarah Kocher and G. H. This project was funded by USDA NIFA Grant 2008-35302-18803.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. Shorter.

Additional information

Edited by Yong-Kyu Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 62 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shorter, J.R., Arechavaleta-Velasco, M., Robles-Rios, C. et al. A Genetic Analysis of the Stinging and Guarding Behaviors of the Honey Bee. Behav Genet 42, 663–674 (2012). https://doi.org/10.1007/s10519-012-9530-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10519-012-9530-5

Keywords

Navigation