Skip to main content
Log in

Ductility of wide-beam RC frames as lateral resisting system

  • Original Research Paper
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

Some Mediterranean seismic codes consider wide-beam reinforced concrete moment resisting frames (WBF) as horizontal load carrying systems that cannot guarantee high ductility performances. Conversely, Eurocode 8 allows High Ductility Class (DCH) design for such structural systems. Code prescriptions related to WBF are systematically investigated. In particular, lesson learnt for previous earthquakes, historical reasons, and experimental and numerical studies underpinning specific prescriptions on wide beams in worldwide seismic codes are discussed. Local and global ductility of WBF are then analytically investigated through (1) a parametric study on chord rotations of wide beams with respect to that of deep beams, and (2) a spectral-based comparison of WBF with conventional reinforced concrete moment resisting frames (i.e. with deep beams). Results show that the set of prescriptions given by modern seismic codes provides sufficient ductility to WBF designed in DCH. In fact, global capacity of WBF relies more on the lateral stiffness of the frames and on the overstrength of columns rather than on the local ductility of wide beams, which is systematically lower with respect to that of deep beams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • ACI (1989) Building code requirements for reinforced concrete (ACI 318-89). ACI Committee 318, American Concrete Institute, Farmington Hills, Michigan, USA

  • ACI (2008) Building code requirements for structural concrete (ACI 318-08) and commentary (318-08). ACI Committee 318, American Concrete Institute, Farmington Hills, Michigan, USA

  • ACI-ASCE (1991) Recommendations for design of beam-column connections in monolithic reinforced concrete structures (ACI 352R-91). Joint ACI-ASCE Committee 352, American Concrete Institute, Farmington Hills, Michigan, USA

  • ACI-ASCE (2002) Recommendations for design of beam-column connections in monolithic reinforced concrete structures (ACI 352R-02). Joint ACI-ASCE Committee 352, American Concrete Institute, Farmington Hills, Michigan, USA

  • Arslan MH, Korkmaz HH (2007) What is to be learned from damage and failure of reinforced concrete structures during recent earthquakes in Turkey? Eng Fail Anal 14(1):1–22

    Article  Google Scholar 

  • ASCE (2007) Seismic Rehabilitation of Existing Buildings, ASCE/SEI 41-06. American Society of Civil Engineers, Reston

    Book  Google Scholar 

  • ASCE (2010) Minimum Design Loads for Building and Other Structures, ASCE/SEI 7-10. American Society of Civil Engineers, Reston

    Google Scholar 

  • Benavent-Climent A (2007) Seismic behavior of RC side beam-column connections under dynamic loading. J Earthquake Eng 11:493–511

    Article  Google Scholar 

  • Benavent-Climent A, Zahran R (2010) An energy-based procedure for the assessment of seismic capacity of existing frames: application to RC wide beam systems in Spain. Soil Dyn Earthq Eng 30:354–367

    Article  Google Scholar 

  • Benavent-Climent A, Cahís X, Zahran R (2009) Exterior wide beam-column connections in existing RC frames subjected to lateral earthquake loads. Eng Struct 31:1414–1424

    Article  Google Scholar 

  • Benavent-Climent A, Cahís X, Vico JM (2010) Interior wide beam-column connections in existing RC frames subjected to lateral earthquake loading. Bull Earthq Eng 8:401–420

    Article  Google Scholar 

  • BHRC (2004) Iranian Code of Practice for Seismic Resistant Design of Buildings. Standard Nº 2800, 3rd edn. Building and Housing Research Center, Tehran

    Google Scholar 

  • Borzi B, Elnashai AS (2000) Refined force reduction factors for seismic design. Eng Struct 22:1244–1260

    Article  Google Scholar 

  • Borzi B, Pinho R, Crowley H (2008) Simplified pushover-based vulnerability analysis for large-scale assessment of RC buildings. Eng Struct 30:804–820

    Article  Google Scholar 

  • BSI (2004) Eurocode 2: Design of concrete structures: Part 1-1: General rules and rules for buildings. British Standards Institutions, London

    Google Scholar 

  • Calvi GM (1999) A displacement-based approach for vulnerability evaluation of classes of buildings. J Earthquake Eng 3(3):411–438

    Google Scholar 

  • CDSC (1994) Seismic construction code, NCSR-94. Committee for the Development of Seismic Codes, Spanish Ministry of Construction, Madrid, Spain (in Spanish)

    Google Scholar 

  • CDSC (2002) Seismic construction code, NCSE-02. Committee for the Development of Seismic Codes, Spanish Ministry of Construction, Madrid, Spain (in Spanish)

    Google Scholar 

  • CEN (2004) Eurocode 8: design of structures for earthquake resistance—part 1: general rules, seismic actions and rules for buildings. European Standard EN 1998-1:2003—Comité Européen de Normalisation, Brussels, Belgium

  • CEN (2005) Eurocode 8: design of structures for earthquake resistance—part 3: assessment and retrofitting of buildings. European Standard EN 1998-1:2005—Comité Européen de Normalisation, Brussels, Belgium

  • Cheung PC, Paulay T, Park R (1991) Mechanisms of slab contributions in beam-column subassemblages. ACI Spec Publ 123

  • Cosenza E, Manfredi G, Polese M, Verderame GM (2005) A multilevel approach to the capacity assessment of existing RC buildings. J Earthquake Eng 9(1):1–22

    Google Scholar 

  • Crowley H, Pinho R (2010) Revisiting Eurocode 8 formulae for periods of vibration and their employment in linear seismic analysis. Earthquake Eng Struct Dynam 39:223–235

    Google Scholar 

  • CS.LL.PP (2009) Instructions for the application of the technique code for the Constructions. Official Gazette of the Italian Republic, 47, Regular Supplement no. 27 (in Italian)

  • De Luca F, Vamvatsikos D, Iervolino I (2013) Near-optimal piecewise linear fits of static pushover capacity curves for equivalent SDOF analysis. Earthquake Eng Struct Dynam 42(4):523–543

    Article  Google Scholar 

  • De Luca F, Verderame GM, Gómez-Martínez F, Pérez-García A (2014) The structural role played by masonry infills on RC building performances after the 2011 Lorca, Spain, earthquake. Bull Earthq Eng 12(5):1999–2026

    Article  Google Scholar 

  • Decanini LD, Mollaioli F (2000) Analisi di vulnerabilità sismica di edifici in cemento armato pre-normativa. In: Cosenza E (ed) Comportamento sismico di edifici in cemento armato progettati per carichi verticali. CNR—Gruppo Nazionale per la Difesa dei Terremoti, Rome (in Italian)

    Google Scholar 

  • Dolšek M, Fajfar P (2004) IN2—a simple alternative for IDA. In: Proceedings of the 13th World conference on Earthquake Engineering. August 1–6, Vancouver, Canada. Paper 3353

  • Domínguez D, López-Almansa F, Benavent-Climent A (2014) Comportamiento para el terremoto de Lorca de 11-05-2011, de edificios de vigas planas proyectados sin tener en cuenta la acción sísmica. Informes de la Construcción 66(533):e008 (in Spanish)

    Article  Google Scholar 

  • Domínguez D, López-Almansa F, Benavent-Climent A (2016) Would RC wide-beam buildings in Spain have survived Lorca earthquake (11-05-2011)? Eng Struct 108:134–154

    Article  Google Scholar 

  • Dönmez C (2013) Seismic Performance of Wide-Beam Infill-Joist Block RC Frames in Turkey. J Perform Constr Facil 29(1):04014026

    Article  Google Scholar 

  • Fadwa I, Ali TA, Nazih E, Sara M (2014) Reinforced concrete wide and conventional beam-column connections subjected to lateral load. Eng Struct 76:34–48

    Article  Google Scholar 

  • Fardis MN (2009) Seismic design, assessment and retrofitting of concrete, Buildings edn. Springer, London

    Book  Google Scholar 

  • Gentry TR, Wight JK (1992) Reinforced concrete wide beam-column connections under earthquake-type loading. Report no. UMCEE 92-12. Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA

  • Gómez-Martínez F (2015) FAST simplified vulnerability approach for seismic assessment of infilled RC MRF buildings and its application to the 2011 Lorca (Spain) earthquake. Ph.D. Thesis, Polytechnic University of Valencia, Spain

  • Gómez-Martínez F, Pérez García A, De Luca F, Verderame GM (2015a) Comportamiento de los edificios de HA con tabiquería durante el sismo de Lorca de 2011: aplicación del método FAST. Informes de la Construcción 67(537):e065 (in Spanish)

    Article  Google Scholar 

  • Gómez-Martínez F, Pérez-García A, Alonso Durá A, Martínez Boquera A, Verderame GM (2015b) Eficacia de la norma NCSE-02 a la luz de los daños e intervenciones tras el sismo de Lorca de 2011. In: Proceedings of Congreso Internacional sobre Intervención en Obras Arquitectónicas tras Sismo: L’Aquila (2009), Lorca (2011) y Emilia Romagna (2012), May 13–14, Murcia, Spain (in Spanish)

  • Gómez-Martínez F, Verderame GM, De Luca F, Pérez-García A, Alonso-Durá, A (2015c). High ductility seismic performances of wide-beam RC frames. In; XVI Convegno ANIDIS. September 13–17, L'Aquila, Italy

  • Hawkins NM, Mitchell D (1979) Progressive collapse of flat plate structures. ACI J 76(7):775–808

    Google Scholar 

  • Iervolino I, Manfredi G, Polese M, Verderame GM, Fabbrocino G (2007) Seismic risk of RC building classes. Eng Struct 29(5):813–820

    Article  Google Scholar 

  • Inel M, Ozmen HB, Akyol E (2013) Observations on the building damages after 19 May 2011 Simav (Turkey) earthquake. Bull Earthq Eng 11(1):255–283

    Article  Google Scholar 

  • Kurose Y, Guimaraes GN, Zuhua L, Kreger ME, Jirsa JO (1991) Evaluation of slab-beam-column connections subjected to bidirectional loading. ACI Spec Publ 123:39–67

    Google Scholar 

  • LaFave JM, Wight JK (1997) Behavior of reinforced exterior wide beam-column-slab connections subjected to lateral earthquake loading. Report no. UMCEE 97-01. Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA

  • LaFave JM, Wight JK (1999) Reinforced concrete exterior wide beam-column-slab connections subjected to lateral earthquake loading. ACI Struct J 96(4):577–586

    Google Scholar 

  • LaFave JM, Wight JK (2001) Reinforced concrete wide-beam construction vs. conventional construction: resistance to lateral earthquake loads. Earthq Spectra 17(3):479–505

    Article  Google Scholar 

  • Li B, Kulkarni SA (2010) Seismic behavior of reinforced concrete exterior wide beam-column joints. J Struct Eng (ASCE) 136(1):26–36

    Article  Google Scholar 

  • López-Almansa F, Domínguez D, Benavent-Climent A (2013) Vulnerability analysis of RC buildings with wide beams located in moderate seismicity regions. Eng Struct 46:687–702

    Article  Google Scholar 

  • Masi A, Santarsiero G, Nigro D (2013a) Cyclic tests on external RC beam-column joints: role of seismic design level and axial load value on the ultimate capacity. J Earthquake Eng 17(1):110–136

    Article  Google Scholar 

  • Masi A, Santarsiero G, Mossucca A, Nigro D (2013b) Seismic behaviour of RC beam-column subassemblages with flat beam. In: Proceedings of XV Convegno della Associazione Nazionale Italiana di Ingegneria Sismica, ANIDIS. Padova, Italy

  • Mazzolani FM, Piluso V (1997) Plastic design of seismic resistant steel frames. Earthquake Eng Struct Dynam 26:167–191

    Article  Google Scholar 

  • MEPP (2000a) Greek earthquake resistant design code, EAK 2000. Ministry of Environment, Planning and Public Works, Athens

    Google Scholar 

  • MEPP (2000b) Greek code for the design and construction of concrete works, EKOS 2000. Ministry of Environment, Planning and Public Works, Athens (in Greek)

    Google Scholar 

  • Miranda E, Bertero VV (1994) Evaluation of strength reduction factors for earthquake-resistant design. Earthq Spectra 10(2):357–379

    Article  Google Scholar 

  • MPWS (2007) Specifications for buildings to be built in seismic areas. Turkish Standards Institution, Ministry of Public Works and Settlement, Ankara (in Turkish)

    Google Scholar 

  • Mwafy AM, Elnashai AS (2002) Calibration of force reduction factors of RC buildings. J Earthquake Eng 6(2):239–273

    Google Scholar 

  • NZS (2004) Structural design actions. Part 5: earthquake actions, NZS 1170.5. New Zealand Standards, Wellington

    Google Scholar 

  • NZS (2006) Concrete structures standard: part 1—the design of concrete structures, NZS 3101 part 1. New Zealand Standards, Wellington

    Google Scholar 

  • Pan A, Moehle JP (1989) Lateral displacement ductility of reinforced concrete flat plates. ACI Struct J 86(3):250–258

    Google Scholar 

  • Panagiotakos TB, Fardis MN (2001) Deformations of reinforced concrete members at yielding and ultimate. ACI Struct J 98(2):135–148 [and Appendix 1 (69 pp)]

    Google Scholar 

  • Paulay T, Priestley MJN (1992) Seismic design of concrete and masonry structures. Wiley, New York, USA

  • Quintero-Febres CG, Wight JK (1997) Investigation on the seismic behavior of RC interior wide beam-column connections. Report no. UMCEE 97-15. Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA

  • Quintero-Febres CG, Wight JK (2001) Experimental study of Reinforced concrete interior wide beam-column connections subjected to lateral loading. ACI Struct J 98(4):572–582

    Google Scholar 

  • Serna-Ros P, Fernández-Prada MA, Miguel-Sosa P, Debb OAR (2001) Influence of stirrup distribution and support width on the shear strength of reinforced concrete wide beams. Mag Concr Res 54(00):1–11

    Google Scholar 

  • Shuraim AB (2012) Transverse stirrup configurations in RC wide shallow beams supported on narrow columns. J Struct Eng 138(3):416–424

    Article  Google Scholar 

  • Siah WL, Stehle JS, Mendis P, Goldsworthy H (2003) Interior wide beam connections subjected to lateral earthquake loading. Eng Struct 25:281–291

    Article  Google Scholar 

  • Tore E, Demiral T (2014) A parametric study of code-based performance limits for wide beams. e-GFOS 5(8):1–11

    Article  Google Scholar 

  • Vamvatsikos D, Cornell CA (2002) Incremental Dynamic Analysis. Earthquake Eng Struct Dynam 31:491–514

    Article  Google Scholar 

  • Vidic T, Fajfar P, Fischinger M (1994) Consistent inelastic design spectra: strength and displacement. Earthquake Eng Struct Dynam 23:507–521

    Article  Google Scholar 

  • Vielma JC, Barbat AH, Oller S (2010) Seismic safety of low ductility structures used in Spain. Bull Earthq Eng 8:135–155

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Gómez-Martínez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez-Martínez, F., Alonso-Durá, A., De Luca, F. et al. Ductility of wide-beam RC frames as lateral resisting system. Bull Earthquake Eng 14, 1545–1569 (2016). https://doi.org/10.1007/s10518-016-9891-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-016-9891-x

Keywords

Navigation