Skip to main content
Log in

Seismic safety of low ductility structures used in Spain

  • Original Research Paper
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

The most important aspects of the design, seismic damage evaluation and safety assessment of structures with low ductility like waffle slabs buildings or flat beams framed buildings are examined in this work. These reinforced concrete structural typologies are the most used in Spain for new buildings but many seismic codes do not recommend them in seismic areas. Their expected seismic performance and safety are evaluated herein by means of incremental non linear structural analysis (pushover analysis) and incremental dynamic analysis which provides capacity curves allowing evaluating their seismic behavior. The seismic hazard is described by means of the reduced 5% damped elastic response spectrum of the Spanish seismic design code. The most important results of the study are the fragility curves calculated for the mentioned building types, which allow obtaining the probability of different damage states of the structures as well as damage probability matrices. The results, which show high vulnerability of the studied low ductility building classes, are compared with those corresponding to ductile framed structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ACI Comitee 318 (2005) Building code requirements for structural concrete ACI 318–05. Farmington Hills, Michigan

    Google Scholar 

  • Barbat AH, Oller S, Mata P, Vielma JC (2008) Computational simulation of the seismic response of buildings with energy dissipating devices. In: Papadrakakis M, Charmpis D, Lagaros N, Tsompanakis Y (eds) Computational structural dynamics and earthquake engineering, vol 2. Taylor & Francis Ltd, London, pp 255–274

    Google Scholar 

  • Car E, Oller S, Oñate E (2000) An anisotropic elasto plastic constitutive model for large strain analysis of fiber reinforced composite materials. Comput Methods Appl Mech Eng 185(2–4): 245–277. doi:10.1016/S0045-7825(99)00262-5

    Article  Google Scholar 

  • Car E, Oller S, Oñate E (2001) A large strain plasticity for anisotropic materials: composite material application. Int J Plast 17(11): 1437–1463. doi:10.1016/S0749-6419(00)00098-X

    Article  Google Scholar 

  • CEN (2001) European Committee for Standardization, Eurocode 2: Design of concrete structures, BS EN 1992, Brussels

  • CEN (2004) European Committee for Standardization, Eurocode 8: Design of structures for earthquake resistance, Part 1: General rules, seismic actions and rules for buildings, EN 2004-1-1, Brussels

  • EHE (1998) Comisión permanente del hormigón estructural, Instrucción de hormigón estructural, Madrid

  • Erberik A, Elnashai A (2006) Loss estimation analysis of flat-slab structures. J Struct Eng 7(1): 26–37

    Google Scholar 

  • Fajfar P (2000) A nonlinear analysis method for perfomance based seismic design. Earthq Spectra 16: 573–591. doi:10.1193/1.1586128

    Article  Google Scholar 

  • Fragiacomo M, Amadio C, Rajgelj S (2006) Evaluation of the structural response Ander seismic actions using non-linear static methods. Earthq Eng Struct Dynam 35: 1511–1531. doi:10.1002/eqe.597

    Article  Google Scholar 

  • Han SW, Chopra A (2006) Approximate incremental dynamic analysis using the modal pushover analysis procedure. Earthq Eng Struct Dynam 35(3): 1853–1873. doi:10.1002/eqe.605

    Article  Google Scholar 

  • ICBO (1997) International Council of Building Officials. Uniform Building Code (UBC), Whittier

  • ICC (2003) International Code Council. International Building Code (IBC), Falls Church

  • Kunnath S (2005) Performance-based seismic design and evaluation of buildings structures. In: Chen W, Lui E (eds) Earthquake engineering for structural design. CRC Press, Boca Raton

    Google Scholar 

  • Mander JB, Priestley MJN, Park R (1988) Observed stress-strain behavior of confined concrete. J Struct Eng 114(8): 1827–1849. doi:10.1061/(ASCE)0733-9445(1988)114:8(1827)

    Article  Google Scholar 

  • Mata P, Oller S, Barbat AH (2007) Static analysis of beam structures under nonlinear geometric and constitutive behavior. Comput Methods Appl Mech Eng 196: 4458–4478. doi:10.1016/j.cma.2007.05.005

    Article  Google Scholar 

  • Mata P, Oller S, Barbat AH (2008a) Dynamic analysis of beam structures under nonlinear geometric and constitutive nonlinearity. Comput Methods Appl Mech Eng 197: 857–878

    Article  Google Scholar 

  • Mata P, Oller S, Barbat AH, Boroschek R (2008b) Constitutive and geometric nonlinear models for the seismic analysis of RC structures with energy dissipators. Arch Comput Methods Eng 15: 489–539. doi:10.1007/s11831-008-9024-z

    Article  Google Scholar 

  • Mwafi A, Elnashai A (2002a) Overstrength and force reduction factors of multistorey reinforced-concrete buildings. Struct Des Tall Build 11: 329–351. doi:10.1002/tal.204

    Article  Google Scholar 

  • Mwafi AM, Elnashai A (2002b) Calibration of force reduction factors of RC buildings. J Earthq Eng 6(2): 239–273. doi:10.1142/S1363246902000723

    Article  Google Scholar 

  • NCSE-02 (2002) Norma de construcción sismorresistente, BOE N 244, Madrid. Available via http://www.proteccioncivil.es/es/Galerias/Descargas/DGPCE/legisla/NCSR-02.pdf. Accessed 20 May 2009

  • Park R (1988) State-of-the-art report: ductility evaluation from laboratory and analytical testing. In: Proceedings of 9th WCEE, IAEE, vol VIII. Tokyo-Kyoto, Japan, pp 605–616

  • Pinto PE, Giannini R, Franchin P (2006) Seismic reliability analysis of structures. IUSS Press, Pavia

    Google Scholar 

  • PLCd (1991–2009) Non-linear thermo mechanic finite element code oriented to PhD student education, code developed at CIMNE

  • Priestley MJN, Calvi GM, Kowalsky MJ (2007) Displacement-based seismic design of structures. IUSS Press, Pavia

    Google Scholar 

  • SEAOC (1995) Vision 2000. Report on performance based seismic engineering of buildings vol I. Structural Engineers Association of California, Sacramento

    Google Scholar 

  • Simo JC (1985) A finite strain beam formulation. The three-dimensional dynamic problem. Part I. Comput Methods Appl Mech Eng 49: 55–70

    Article  Google Scholar 

  • Vamvatsikos D, Cornell CA (2002) Incremental dynamic analysis. Earthq Eng Struct Dynam 31(3): 491–514

    Article  Google Scholar 

  • Vielma JC (2008) Caracterización de la respuesta sísmica de edificios de hormigón armado mediante la respuesta no lineal. PhD Thesis, Universitat Politecnica de Catalunya, Spain

  • Vielma JC, Barbat AH, Oller S (2006) Comparación entre los factores de reducción de respuesta de la norma NCSE-02 y del Eurocódigo 8. Hormigón y acero 246: 79–95

    Google Scholar 

  • Vielma JC, Barbat AH, Oller S (2009) Seismic preformance of Waffled-Slab floor buildings. Proc P I Civil Eng-Str (in press)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Barbat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vielma, J.C., Barbat, A.H. & Oller, S. Seismic safety of low ductility structures used in Spain. Bull Earthquake Eng 8, 135–155 (2010). https://doi.org/10.1007/s10518-009-9127-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-009-9127-4

Keywords

Navigation