Skip to main content
Log in

Features of Remyelination after Transplantation of Olfactory Ensheathing Cells with Neurotrophic Factors into Spinal Cord Cysts

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

This paper shows for the first time that co-transplantation of human olfactory ensheathing cells with neurotrophin-3 into spinal cord cysts is more effective for activation of remyelination than transplantation of cells with brain-derived neurotrophic factor and a combination of these two factors. The studied neurotrophic factors do not affect proliferation and migration of ensheathing cells in vitro. It can be concluded that the maximum improvement of motor function in rats receiving ensheathing cells with neurotrophin-3 is largely determined by activation of remyelination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alizadeh A, Dyck SM, Karimi-Abdolrezaee S. Traumatic spinal cord injury: an overview of pathophysiology, models and acute injury mechanisms. Front. Neurol. 2019;10:282. doi: https://doi.org/10.3389/fneur.2019.00282

    Article  PubMed  PubMed Central  Google Scholar 

  2. Orr MB, Gensel JC. Interactions of primary insult biomechanics and secondary cascades in spinal cord injury: implications for therapy. Neural Regen. Res. 2017;12(10):1618-1619. doi: https://doi.org/10.4103/1673-5374.217332

    Article  PubMed  PubMed Central  Google Scholar 

  3. Oyinbo CA. Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade. Acta Neurobiol. Exp. (Wars). 2011;71(2):281-299.

    Article  PubMed  Google Scholar 

  4. Lim ST, Airavaara M, Harvey BK. Viral vectors for neurotrophic factor delivery: a gene therapy approach for neurodegenerative diseases of the CNS. Pharmacol. Res. 2010;61(1):14-26. doi: https://doi.org/10.1016/j.phrs.2009.10.002

    Article  CAS  PubMed  Google Scholar 

  5. Tabakow P, Jarmundowicz W, Czapiga B, Fortuna W, Miedzybrodzki R, Czyz M, Huber J, Szarek D, Okurowski S, Szewczyk P, Gorski A, Raisman G. Transplantation of autologous olfactory ensheathing cells in complete human spinal cord injury. Cell Transplant. 2013;22(9):1591-1612. doi: https://doi.org/10.3727/096368912X663532

    Article  PubMed  Google Scholar 

  6. Wright AA, Todorovic M, Tello-Velasquez J, Rayfield AJ, St John JA, Ekberg JA. Enhancing the therapeutic potential of olfactory ensheathing cells in spinal cord repair using neurotrophins. Cell Transplant. 2018;27(6):867-878. doi: https://doi.org/10.1177/0963689718759472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Borgmann-Winter K, Willard SL, Sinclair D, Mirza N, Turetsky B, Berretta S, Hahn CG. Translational potential of olfactory mucosa for the study of neuropsychiatric illness. Transl. Psychiatry. 2015;5(3):e527. doi: https://doi.org/10.1038/tp.2014.141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nakhjavan-Shahraki B, Yousefifard M, Rahimi-Movaghar V, Baikpour M, Nasirinezhad F, Safari S, Yaseri M, Moghadas Jafari A, Ghelichkhani P, Tafakhori A, Hosseini M. Transplantation of olfactory ensheathing cells on functional recovery and neuropathic pain after spinal cord injury; systematic review and meta-analysis. Sci. Rep. 2018;8(1):325. doi: https://doi.org/10.1038/s41598-017-18754-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nori S, Nakamura M, Okano H. Plasticity and regeneration in the injured spinal cord after cell transplantation therapy. Prog. Brain Res. 2017;231:33-56. doi: https://doi.org/10.1016/bs.pbr.2016.12.007

    Article  PubMed  Google Scholar 

  10. Keefe KM, Sheikh IS, Smith GM. Targeting neurotrophins to specific populations of neurons: NGF, BDNF, and NT-3 and their relevance for treatment of spinal cord injury. Int. J. Mol. Sci. 2017;18(3):548. doi: https://doi.org/10.3390/ijms18030548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lin XY, Lai BQ, Zeng X, Che MT, Ling EA, Wu W, Zeng YS. Cell Transplantation and neuroengineering approach for spinal cord injury treatment: a summary of current laboratory findings and review of literature. Cell Transplant. 2016;25(8):1425-1438. doi: https://doi.org/10.3727/096368916X690836

    Article  PubMed  Google Scholar 

  12. Pearse DD, Bunge MB. Designing cell- and gene-based regeneration strategies to repair the injured spinal cord. J. Neurotrauma. 2006;23(3-4):438-452. doi: https://doi.org/10.1089/neu.2006.23.437

    Article  CAS  PubMed  Google Scholar 

  13. Widenfalk J, Lundströmer K, Jubran M, Brene S, Olson L. Neurotrophic factors and receptors in the immature and adult spinal cord after mechanical injury or kainic acid. J. Neurosci. 2001;21(10):3457-3475. doi: https://doi.org/10.1523/JNEUROSCI.21-10-03457.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stepanova OV, Voronova AD, Chadin AV, Fursa GA, Karsuntseva EK, Valikhov MP, Semkina AS, Reshetov IV, Chekhonin VP. Neurotrophin-3 Enhances the effectiveness of cell therapy in chronic spinal cord injuries. Bull. Exp. Biol. Med. 2022;173(1):114-118. doi: https://doi.org/10.1007/s10517-022-05504-4

    Article  CAS  PubMed  Google Scholar 

  15. Voronova AD, Stepanova OV, Valikhov MP, Chadin AV, Dvornikov AS, Reshetov IV, Chekhonin VP. Preparation of human olfactory ensheathing cells for the therapy of spinal cord injuries. Bull. Exp. Biol. Med. 2018;164(4):523-527. doi: https://doi.org/10.1007/s10517-018-4025-x

    Article  CAS  PubMed  Google Scholar 

  16. Luo X, Sharma D, Inouye H, Lee D, Avila RL, Salmona M, Kirschner DA. Cytoplasmic domain of human myelin protein zero likely folded as beta-structure in compact myelin. Biophys. J. 2007;92(5):1585-1597. doi: https://doi.org/10.1529/biophysj.106.094722

    Article  CAS  PubMed  Google Scholar 

  17. Raasakka A, Kursula P. How does protein zero assemble compact myelin? Cells. 2020;9(8):1832. doi: https://doi.org/10.3390/cells9081832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Higginson JR, Barnett SC. The culture of olfactory ensheathing cells (OECs) — a distinct glial cell type. Exp. Neurol. 2011;229(1):2-9. doi: https://doi.org/10.1016/j.expneurol.2010.08.020

    Article  PubMed  PubMed Central  Google Scholar 

  19. Akiyama Y, Lankford K, Radtke C, Greer CA, Kocsis JD. Remyelination of spinal cord axons by olfactory ensheathing cells and Schwann cells derived from a transgenic rat expressing alkaline phosphatase marker gene. Neuron Glia Biol. 2004;1(1):47-55. doi: https://doi.org/10.1017/S1740925X04000079

    Article  PubMed  PubMed Central  Google Scholar 

  20. Franklin RJ. Remyelination by transplanted olfactory ensheathing cells. Anat. Rec. B New Anat. 2003;271(1):71-76. doi: https://doi.org/10.1002/ar.b.10013

    Article  PubMed  Google Scholar 

  21. Nagoshi N, Shibata S, Hamanoue M, Mabuchi Y, Matsuzaki Y, Toyama Y, Nakamura M, Okano H. Schwann cell plasticity after spinal cord injury shown by neural crest lineage tracing. Glia. 2011;59(5):771-784. doi: https://doi.org/10.1002/glia.21150

    Article  PubMed  Google Scholar 

  22. Lindsay SL, Toft A, Griffin J, M M Emraja A, Barnett SC, Riddell JS. Human olfactory mesenchymal stromal cell transplants promote remyelination and earlier improvement in gait co-ordination after spinal cord injury. Glia. 2017;65(4):639-656. doi: https://doi.org/10.1002/glia.23117

  23. Lindsay SL, Johnstone SA, Mountford JC, Sheikh S, Allan DB, Clark L, Barnett SC. Human mesenchymal stem cells isolated from olfactory biopsies but not bone enhance CNS myelination in vitro. Glia. 2013;61(3):368-382. doi: https://doi.org/10.1002/glia.22440

    Article  PubMed  Google Scholar 

  24. Chan JR, Watkins TA, Cosgaya JM, Zhang C, Chen L, Reichardt LF, Shooter EM, Barres BA. NGF controls axonal receptivity to myelination by Schwann cells or oligodendrocytes. Neuron. 2004;43(2):183-191. doi: https://doi.org/10.1016/j.neuron.2004.06.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Novikova LN, Novikov LN, Kellerth JO. BDNF abolishes the survival effect of NT-3 in axotomized Clarke neurons of adult rats. J. Comp. Neurol. 2000;428(4):671-680. doi: https://doi.org/10.1002/1096-9861(20001225)428:4<671::aid-cne7>3.0.co;2-h

    Article  CAS  PubMed  Google Scholar 

  26. Mischel PS, Smith SG, Vining ER, Valletta JS, Mobley WC, Reichardt LF. The extracellular domain of p75NTR is necessary to inhibit neurotrophin-3 signaling through TrkA. J. Biol. Chem. 2001;276(14):11 294-11 301. doi: https://doi.org/10.1074/jbc.M005132200

  27. Bothwell M. NGF, BDNF, NT3, and NT4. Handb. Exp. Pharmacol. 2014;220:3-15. doi: https://doi.org/10.1007/978-3-642-45106-5_1

    Article  CAS  PubMed  Google Scholar 

  28. Hiebert GW, Khodarahmi K, McGraw J, Steeves JD, Tetzlaff W. Brain-derived neurotrophic factor applied to the motor cortex promotes sprouting of corticospinal fibers but not regeneration into a peripheral nerve transplant. J. Neurosci. Res. 2002;69(2):160-168. doi: https://doi.org/10.1002/jnr.10275

    Article  CAS  PubMed  Google Scholar 

  29. Lu P, Blesch A, Tuszynski MH. Neurotrophism without neurotropism: BDNF promotes survival but not growth of lesioned corticospinal neurons. J. Comp. Neurol. 2001;436(4):456-470. doi: https://doi.org/10.1002/cne.1080

    Article  CAS  PubMed  Google Scholar 

  30. Bianco JI, Perry C, Harkin DG, Mackay-Sim A, Féron F. Neurotrophin 3 promotes purification and proliferation of olfactory ensheathing cells from human nose. Glia. 2004;45(2):111-123. doi: https://doi.org/10.1002/glia.10298

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. K. Karsuntseva.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 4, pp. 242-248, December, 2023

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepanova, O.V., Fursa, G.A., Karsuntseva, E.K. et al. Features of Remyelination after Transplantation of Olfactory Ensheathing Cells with Neurotrophic Factors into Spinal Cord Cysts. Bull Exp Biol Med 176, 666–671 (2024). https://doi.org/10.1007/s10517-024-06088-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-024-06088-x

Keywords

Navigation